Name \qquad Date \qquad
Purpose:
Find the mechanical advantage and the efficiency of several different gear and lever systems.
Concepts:

For each 10 clockwise turns of the input gear, how many turns, including direction, does the output gear complete?
\qquad
\qquad

Data:		Draw the Gears	Calculations:	
Weight Output			Torque input FxL	
Distance Output			Torque output	
Force			W x D	
Lever Arm Input			Gear Ratio	

For each 10 clockwise turns of the input gear, how many turns, including direction, does the output gear complete?

Data:		Draw the Gears	Calculations:	
Weight Output			Torque input $F \times L$	
Distance Output			Torque output	
Force Input			x D	
Lever Arm Input			Gear Ratio	

For each 10 clockwise turns of the input gear, how many turns, including direction, does the output gear complete?
\qquad
\qquad

Data:		Draw the Gears	Calculations:	
Weight Output			Torque input FxL	
Distance Output			Torque output	
Force			W x D	
Lever Arm Input			Gear Ratio	

For each 10 clockwise turns of the input gear, how many turns, including direction, does the output gear complete?

Data:		Draw the Gears	Calculations:	
Weight Output			Torque input $F \times L$	
Distance Output			Torque output	
Force Input			x D	
Lever Arm Input			Gear Ratio	

For each 10 clockwise turns of the input gear, how many turns, including direction, does the output gear complete?

Name \qquad Date \qquad

1. A machine is constructed as shown with a 36-tooth gear, a 24- tooth gear, two levers, and two 2-newton weights. When the top weight is hung in the location shown, will it go up or down? Why?

2. Where could you hang the top weight so that the machine would balance?
3. Which arrangement of gears on a ten-speed bicycle would be more useful for climbing hills? Explain.
4. If you were trying to go farther with fewer turns of the pedals, which arrangement of input and output gears would you want on your bicycle? Explain.

