PROJECTILE MOTION

Definitions:

*Simple Projectile Motion:
*The motion of a body thrown or fired with an initial velocity v_{o} in a gravitational field.
*Projectile:
*A kinematic object whose motion is influenced by only the force of gravity.
*Trajectory:
*The path through space followed by a projectile.

Linear Motion

* A baseball is dropped from the top of a bridge 200 m above the water.
* When does it hit the base? (water)
* What is its final velocity?

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 \text { a d } \\
& v f_{f}^{2}=0+2(-9.8)(-200) \\
& v_{f}= \pm 62.61 \mathrm{~m} / \mathrm{s} \\
& \pm \text { choose the one that } \\
& \text { makes sense }
\end{aligned}
$$

Reaction Time

* A meter stick is dropped, and is caught by a second student.
* The meter stick fell 16.5 cm
* How much time did it take to be caught?
* What is its final velocity?

Reaction

Time
*A meter stick is dropped,
and is caught by a second
student.
*The meter stick fell 16.5 cm
*How much time did it take
to be caught?
*What is its final velocity?

Sample Problem

- A driver traveling at $30.0 \mathrm{~km} / \mathrm{hr}$ sees the light turn red at the intersection. If his reaction time is 0.600 s , and the car can decelerate at $4.50 \mathrm{~m} / \mathrm{s}^{2}$, find the stopping distance of the car.

Picture the velocity graph

Grab the "givens"

A driver traveling at $30.0 \mathrm{~km} / \mathrm{hr}$ sees the light turn red at the intersection. If his reaction time is 0.600 s , and the car can decelerate at $4.50 \mathrm{~m} / \mathrm{s}^{2}$, find the stopping distance of the car.

A little more complicated

*A penny is thrown, straight up in the air, with an upward velocity of $15 \mathrm{~m} / \mathrm{s}$ from the top of a 90 m building.
*How high does it go?
*When does it land?
*What is its final velocity?

Solve:
Height at the Top

* $\mathbf{v f}^{\mathbf{2}}=\mathbf{v i}^{\mathbf{2}}+\mathbf{2} \mathbf{a d}$
* $0=15^{2}+2(-9.8) \mathrm{d}$
* $d=11.5 m$
* $Y_{\max }=\mathrm{h}=101.5 \mathrm{~m}$

Solve:

Time at the Top

* $\mathbf{v f}=\mathbf{v i}+\mathbf{a t}$
* $0=15+(-9.8) t$
* $t=1.53 \mathrm{~s}$

Solve:

Velocity at the Bottom
$* \mathbf{f}^{2}=\mathbf{v i}^{2}+2 \mathbf{a} \mathbf{d}$
$* V f^{2}=0+2(-9.8)(-101.5)$
$* V_{f}= \pm 44.6 \mathrm{~m} / \mathrm{s}$

* \pm means you have to decide "up" or "down"

Solve:

Time at the Bottom

* $\mathbf{y}_{\mathrm{f}}=\mathbf{y}_{\mathbf{i}}+\mathbf{v}_{\mathbf{y}} \mathbf{t}+\mathbf{1} / \mathbf{2} \mathbf{a} \mathbf{t}^{\mathbf{2}}$
* $0=101.5+1 / 2(-9.8) t^{2}$
* $\mathrm{t}=4.55 \mathrm{~s}$
* Total Time $=6.08 \mathrm{~s}$

Pumpkin Projectile

Each new trial had the same Y velocity, and increased the X velocity.

Vampire Projectile

Each new trial had the same X velocity, and increased the Y velocity.

Football Projectile

Each new trial had the same speed but at different angles.

Step 1 - Find out what people think.

Partners, 30 points
*Using Poll Everywhere, you and a partner will create and analyze a 15 question survey about the public perception of $A V$.
*3+ q - What does the responder currently feel about autonomous vehicles?
*3+ q - What is happening currently in AV Safety and Development (Waymo safety report or..)
*3+ q - What will be some possible advantageous use cases (lets talk)
*3+ q - Other considerations (Focus on your book chapter)
*Present and consider your results.

Step 2 - Deeper Investigation.

Individual, 30 points

* Explain your book reading as if you were being interviewed. Think podcast discussion.
* 2 page submitted
* Why you selected the topic.
*A good long paragraph.. 150+ words?
* Summary of findings.
* 2-3 paragraphs 250-300 words?
*Conclusion Thoughts
*A good long paragraph.. 100-150 words?

Step 3 - Solve the Physics.
 small groups, 40 points

*First, use Logger Pro to analyze the velocity of a car driving through Tower Hill's campus.
*Also, find the acceleration of a car that is approaching a walkway or stop sign.
*Submit screen captures of the motion analysis of your videos, and the graphs of position/time and velocity/time for each.

Problem 1

* Your car drives down the road towards a stop sign. Based on your values for velocity and acceleration, how far from the stop sign would the driver need to be in order to stop?

Problem 2

* How long should it take you to drive
"home" (either partner)
*You must go the speed limit (exactly) at all times.
*You will hit every other stop light, requiring a "stop" a "start" and a 45s "wait"

Problem 3

* Your car drives down the road in front of the school. The driver notices a student about to cross the road ahead. What is the minimum distance required to provide student safety? Include a 0.8 s reaction time.
*The student walks at 3 miles per hour.
*The student is 12 feet from the side of the road when you see them.
*The lane you are in is 16 feet wide.

Problem 4

* Your car drives down the road in front of the school, following another driver. The front car applies their brakes to allow a student to cross the street.
* You were only looking down for 1 second, and you react quickly (0.4 s). Because you "slam" your brakes, your car can provide twice the acceleration of a normal stop.
*How far behind the other car would you need to drive, so that you can safely stop without hitting them?

The Cliff

* Problems of this style have an Initial Velocity that is Horizontal
* "x" Velocity is constant
* Common Questions;
* Find Time
* Find Range
* Find Final "y" Velocity
* Find Final Velocity

A Ball Rolls From a Cliff

Ignore the "complicated" parabola

Find the time to land

Find $V_{f y}$

* $v_{f}^{2}=v_{i}{ }^{2}+2 a d$
* $\mathrm{V}_{\mathrm{ty}}{ }^{2}=0+2(-9.8)(-48)$
* $\mathrm{V}_{\mathrm{ty}}{ }^{2}=940.8$
* $\mathrm{V}_{\mathrm{fy}}= \pm 30.67 \mathrm{~m} / \mathrm{s}$

Find the Direction for \mathbf{V}_{f}

* $\tan ^{-1}(-30.67 / 24)$
* Most calculators will show -51.9
* Properly state 308°

Find the Range

time	x velocity	y velocity	x position	y positition
$\mathbf{0}$	12	0	0	400
$\mathbf{2}$	12	-19.6	24	380.4
4	12	-39.2	48	321.6
6	12	-58.8	72	223.6
$\mathbf{8}$	12	-78.4	96	86.4
10	12	-98	120	.0000000000

SOCCER BALL

VECTORS

* As a vector at the start of a problem
* X velocity will not change
* Y velocity is changed by gravity
* As a vector at the end of a problem

The Soccer Ball

Position, Time, Velocity

* Common Questions;
* Maximum Height
* Where and when does it land?
* Final velocity?

Initial Velocities

* $v_{i}=20 \mathrm{~m} / \mathrm{s}$ at 32°
* $V_{\text {ix }}=20 \cos 32^{\circ}$
* $V_{i y}=20 \sin 32^{\circ}$
* $a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
* $\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s}^{2}$

Time at the Top

$$
\begin{aligned}
& * v_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+a t \\
& * 0=10.6+(-9.8) t \\
& * t=1.08 \mathrm{~s}
\end{aligned}
$$

Time to the ground

* $t_{\text {top }}=1.08 \mathrm{~s}$
* same distance, and acceleration?
* $T=2 t=2.163 s$

Range - the final x position

* $\mathrm{T}=2.163 \mathrm{~s}$
* $x=x+v T+1 / 2$ a 2
* $x=0+(16.96)(2.16)+0$
* $\mathrm{x}_{\mathrm{f}}=36.7 \mathrm{~m}$

Final Velocity
Using some symmetry

Given Information

Projectile Lab Experiment Vertical Launch

Setting	Average Maximum Height
1 click	
2 clicks	
3 clicks	

Projectile Lab Experiment Second Launch

Calculated Velocity	Assigned Angle	Predicted Range	Predicted Time

Projectile Lab Experiment Third Launch

