

Electric Charge

- The charge of a single electron is 1.6021×10^{-19} Coulombs
- or... it would take 6.241×10^{18} electrons to have a Coulomb of charge
- 1 Ampere is a current of that many electrons every second.

\qquad

Resistors in Parallel

The Charges have a choice of paths to follow.
This decreases the total resistance.

$$
\text { Voltage: } \quad \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}
$$

$$
\text { Current: } \quad \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

$$
\text { Resistance: } \quad 1 / R_{T}=1 / R_{14}+1 / R_{2}+1 / R_{3}
$$

Resistors in Combination Circuits

Some in Series, some in Parallel
Look for parts that are only one or the other
Find an Equivalent Resistance

Resistors

in Combinations

Resistors
in Combinations

