

Thin Lenses

Ray Diagram: Converging Lens

The primary focal point is on the opposite side to the object

Ray Diagram: Converging Lens

The primary focal point is on the opposite side to the object

Ray Diagram: Converging Lens

The primary focal point is on the opposite side to the object

Ray Diagram: Converging Lens

The primary focal point is on the opposite side to the object

Measurements: Converging Lens

Still to Come..

If the object is inside two focal lengths, the reverse occurs and thee magnification increases the size of the image

If the object is inside one focal length, a virtual image is formed and the magnification is positive

Equations

$$
\frac{1}{f}=\frac{1}{D_{i}}+\frac{1}{D_{o}}
$$

$M=\frac{H_{i}}{H_{o}}=-\frac{D_{i}}{D_{o}}$

Equations

A 5 cm tall candle is placed 6 cm from a converging lens with a focal length of 30 cm .

Where is the image formed?
What is the height of the image?

Ray Diagram: Converging Lens

Ray Diagram: Converging Lens

Ray Diagram: Converging Lens

Ray Diagram: Converging Lens

Measurements: Converging Lens

Ray Diagrams: Diverging Lens

The primary focal point is on the same side as the object

Ray Diagrams: Diverging Lens

The primary focal point is on the same side as the object

Ray Diagrams: Diverging Lens

The primary focal point is on the same side as the object

Ray Diagrams: Diverging Lens

The primary focal point is on the same side as the object

Measurements: Diverging Lens

Ray Diagrams: Diverging Lens

the image is similar with the object on either side of the focal point

(e) Spherioal Mirrors

Ray Diagram: Spherical Mirror

There is only one focal point, halfway between the mirror and the center.

Ray Diagram: Spherical Mirror

There is only one focal point, halfway between the mirror and the center.

Ray Diagram: Spherical Mirror

There is only one focal point, halfway between the mirror and the center.

Ray Diagram: Spherical Mirror

There is only one focal point, halfway between the mirror and the center.

Ray Diagram: Spherical Mirror

There is only one focal point, halfway between the mirror and the center.

Measurements: Spherical Mirror

Ray Diagram: Spherical Mirror 2

Measurement: Spherical Mirror 2

Ray Diagram: Spherical Mirror 3

Ray Diagram: Spherical Mirror 3

Ray Diagram: Spherical Mirror 3

Ray Diagram: Spherical Mirror 3

Measurement: Spherical Mirror 3

Mirror
$\mathrm{f}=\mathrm{r} / 2$
Lens/Mirror
$1 / \mathrm{f}=1 / \mathrm{Di}+1 / \mathrm{Do}$
Magnification
$\mathrm{M}=\mathrm{Hi} / \mathrm{Ho}=-\mathrm{Di} / \mathrm{Do}$

$$
\begin{gathered}
\mathrm{f}=\frac{\mathrm{r}}{2} \\
\frac{1}{\mathrm{f}}=\frac{1}{d_{i}}+\frac{l}{d_{o}} \\
\mathrm{~m}=\frac{h_{i}}{h_{i}}=\frac{d_{i}}{d_{o}}
\end{gathered}
$$

