

Mirror Lab

Pick up;
a ruler
a mirror
a protractor
a 200 g or 100 g mass
1 sheet of paper
-Fold the paper in half
-Trace the center line
-Draw a simple object

Stand up the mirror on the center line

Stand up the mirror on the center line

You may slide the mirror left or right to correctly see the image

Move away the mirror Extend your sight lines through to find their intersection point

Measurements

Measure Carefully

Real Images are positive
Virtual Images are negative distances

Angles of Reflection

	Di	Do	日i	日r
A				
B				
C				

Additional construction

- A^{1}

Angles are measured from the normal line at the mirror

Snell's Law Lab

Quses\%ons?

Set Up

Angle of Incidence

Find the image

Angle of Refiraction

Observe The smaller angle is in the material that is more optically dense

Datal Calculations

$\theta \mathbf{i}$	$\theta \mathrm{r}$	$\sin \theta_{i} / \sin \theta_{r}$
30°		
40°		
50°		

Index of Refraction

Snell's Law

WILLEBRORDUS SNELLIUS
PROFESSOR MATHESEOS.
Willebrord Snell 1591-1626

vacuum	$n=1.0$
air	$n=1.0003$
water	$n=1.33$
glass	$n=1.5$

Index of Refraction: a ratio of the speed of light in a vacuum to the speed of light in a medium

$\mathrm{n}=\mathrm{c} / \mathrm{v}$

vacuum $n=1.0$
air
$n=1.0003$
glass $\mathrm{n}=1.5$

Where the waves bend

How do you skip a rock?

Internal Reflection

The critical angle of incidence creates a 90° angle of refraction

Only occurs when light passes from a more dense into a less dense medium.

Occurs when the angle of incidence is greater than the critical angle

