Resistors- You have one of each of the following resistors.
R1 Green, Black, Black

R2 Brown, Green, Brown

R3 Red, Black, Brown

R4 Blue, Orange, Yellow

R5 Violet, Yellow, Orange

What is the resistance in each of the 5 resistors?
R1
R2
R3
R4
R5

Given one of each, use the above resistors to answer these questions.
2. What is the total resistance if $\mathrm{R}_{3}, \mathrm{R}_{4}$, and R_{5} are placed in Series
3. What is the total resistance if R 1 and R_{3} are placed in Parallel?
4. How can you use these resistors to get a total resistance of 400?
5. How can you get a total resistance of 237.5 ?

Complete the table below

	Q	V	$\mathrm{C} \mu \mathrm{F}$	W
C 1			150	
C 2			150	
C 3			600	
C 4			25	
C 5			100	
C 6				
T				

Academic Physics - Resistors and Capacitors

	V	I	R	P
R1			100	
R2			200	
R3			80	
R4			30	
R5			90	
R6				
T	120			

What is the value of a capacitor that holds $6.0 \mu \mathrm{C}$ across a potential of 8 V ?

A $5 \mu \mathrm{~F}$ capacitor is connected to a 45 V source. What is the charge on the capacitor, and how much energy does it store?

A 250Ω resistor is connected to a 6 V battery. What is the current through the resistor?

What value of resistance is necessary to get a current of 1.5 A when it is connected to a 30 V source?

$\mathrm{E}=6 \mathrm{~V}=$| R1 |
| :---: | :---: | :---: | :---: | :---: |

	Q	V	C
R1			15
R2			25
R3			80
T		30	

Resistors- You have one of each of the following resistors.
R1 Green, Black, Black

R2 Brown, Green, Brown

R3 Red, Black, Brown

R4 Blue, Orange, Yellow

R5 Violet, Yellow, Orange

What is the resistance in each of the 5 resistors?
R1 $50 \quad R 2150 \quad R 3200 \quad R 4 \quad 630,000 \quad R 5 \quad 74,000$

Given one of each, use the above resistors to answer these questions.
2. What is the total resistance if $\mathrm{R}_{3}, \mathrm{R}_{4}$, and R_{5} are placed in Series 704,200
3. What is the total resistance if R 1 and R 3 are placed in Parallel?

40
4. How can you use these resistors to get a total resistance of 400?

A series of R1 + R2 + R3

5. How can you get a total resistance of 237.5 ?
R_{4} in series with (R_{1} and R_{2} in parallel)

Complete the table below

	Q	V	$\mathrm{C} \mu \mathrm{F}$	W
C 1	$\mathbf{6 0 0}$	$\mathbf{4}$	150	$\mathbf{1 2 0 0}$
C 2	$\mathbf{6 0 0}$	$\mathbf{4}$	150	$\mathbf{1 2 0 0}$
C 3	$\mathbf{1 2 0 0}$	$\mathbf{2}$	600	$\mathbf{1 2 0 0}$
C 4	$\mathbf{1 5 0}$	$\mathbf{6}$	25	$\mathbf{4 5 0}$
C 5	$\mathbf{4 5 0}$	$\mathbf{6}$	$\mathbf{1 3 5 0}$	
C 6	$\mathbf{6 0 0}$	$\mathbf{6}$	100	$\mathbf{1 8 0 0}$
T	$\mathbf{1 2 0 0}$	12	$\mathbf{1 0 0}$	$\mathbf{7 2 0 0}$

	V	I	R	P
R1	$\mathbf{4 0}$	$\mathbf{0 . 4}$	100	$\mathbf{1 6}$
R2	$\mathbf{8 0}$	$\mathbf{0 . 4}$	200	$\mathbf{3 2}$
R3	$\mathbf{8 0}$	$\mathbf{1}$	80	$\mathbf{8 0}$
R4	$\mathbf{4 0}$	$\mathbf{1}$	40	$\mathbf{4 0}$
R5	$\mathbf{3 0}$	$\mathbf{1}$	30	$\mathbf{3 0}$
R6	$\mathbf{9 0}$	$\mathbf{1}$	90	$\mathbf{9 0}$
T	120	$\mathbf{2 . 4}$	$\mathbf{5 0}$	$\mathbf{2 8 8}$

What is the value of a capacitor that holds $6.0 \mu \mathrm{C}$ across a potential of 8 V ?

$0.75 \mu \mathrm{~F}$

A $5 \mu \mathrm{~F}$ capacitor is connected to a 45 V source. What is the charge on the capacitor, and how much energy does it store?

$225 \mu \mathrm{C} \quad 562 \mu \mathrm{~J}$

A 250Ω resistor is connected to a 6 V battery. What is the current through the resistor?
0.024 A

What value of resistance is necessary to get a current of 1.5 A when it is connected to a 30 V source?
20Ω

$\mathrm{E}=6 \mathrm{~V}=$| |
| :---: | :---: | :---: | :---: |

	Q	V	C
R1	$\mathbf{4 5 0}$	30	15
R2	750	30	25
R3	2400	30	80
T	3600	30	120

