\qquad

Torque

$\mathrm{T}=\mathrm{Fd} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$
 What does each part of this equation mean? What units?

Left $=$ Right clockwise $=$

-what equations can be used to solve this type of example?
-why is this one different from the above example?
\qquad

Center Of Mass

$$
x_{c m}=\frac{x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}}{m_{t o t a l}}
$$

What does each part of this equation mean? What units?

\qquad

Centripetal Force

Stay balanced, there's no turning around now.
-what is the difference between centripetal and centrifugal?
\qquad

Radius (in m)	Force (in N)	Time $(20 \mathrm{rev})$	Period $(1 \mathrm{rev})$	velocity $(\mathrm{m} / \mathrm{s})$	\mathbf{v}^{2} $\left(\mathrm{~m}^{2} / \mathrm{s}^{2}\right)$

How did you get each value for this table during your lab experiment?

\qquad

Universal Gravity

$5.97 \times 10^{24} \mathrm{~kg}$ Mass of the Earth $7.24 \times 10^{22} \mathrm{~kg}$ Mass of the Moon $3.84 \times 10^{8} \mathrm{~m}$ radius of lunar orbit $6.371 \times 10^{6} \mathrm{~m}$ radius of the Earth

What does Gm/r² equal if you use the mass and radius for the earth?

-what method can be used to solve this type of example?
what would be the result of making the distance 5 times smaller?

