$$x_f = x_i + vt + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2ad$$

vector

scalar

resultant

equilibrant

distance

displacement

speed

velocity

acceleration

Time	
Time	
Time	
Time	

$$x_f = x_i + vt + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2ad$$

$$x_f = x_i + v_i + \frac{1}{2}at^2$$
 $v_f = v_i + at$
 $v_f^2 = v_i^2 + 2ad$
 $F = ma$

$$F=\mu N$$

$$egin{aligned} ar{w}_{\parallel} &= ar{w}sin heta \ ar{w}_{\perp} &= ar{w}cos heta \end{aligned}$$

1st

2nd

3rd

Forces and Newton's Laws

$$x_f = x_i + v_i t + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2ad$$

$$x_f = x_i + v_i t + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2ad$$

$$ar{F} = \mu ar{N}$$

 $ar{F} = \mu ar{N}$ What does each part of this equation mean? What units?

1st

2nd

3rd

$$egin{aligned} ar{w}_\parallel &= ar{w} sin heta \ ar{w}_\perp &= ar{w} cos heta \end{aligned}$$

Torque

$T = F d sin \theta$

What does each part of this equation mean? What units?

up =

-what equations can be used to solve this type of example?

-why is there a circle under the one player?

-what equations can be used to solve this type of example?

-why is this one different from the above example?

-what method can be used to solve this type of example?

-why were some more challenging than others?

Center Of Mass

$$x_{cm} = rac{x_1 m_1 + x_2 m_2 + x_3 m_3}{m_{total}}$$

What does each part of this equation mean? What units?

-describe what you are finding in this example

-what if things aren't all in one line?

Centripetal Force

-what equations can be used to solve this type of example?

$$F_c = \frac{mv^2}{r}$$

What does each part of this equation mean? What units?

-what equations can be used to solve this type of example?

 $a_c=rac{v}{r}^2$

What does each part of this equation mean? What units?

-what equations can be used to solve this type of example?

-what is the difference between centripetal and centrifugal?

Stay balanced, there's no turning around now.

-what equations can be used to solve these 3 examples?

what is the minimum speed if the radius is 1 meter?

Radius	Force	Time	Period	velocity	v ²
(in m)	(in N)	(20 rev)	(1 rev)	(m/s)	(m ² /s ²)

How did you get each value for this table during your lab experiment?

Universal Gravity

$$F_g = \frac{GMm}{r^2}$$

$$G = 6.67 \times 10^{-11} Nm^2 / kg^2$$

What does each part of this equation mean? What units?

5.97x10²⁴ kg *Mass of the Earth* 7.24x10²² kg *Mass of the Moon* 3.84x10⁸ m *radius of lunar orbit* 6.371x10⁶ m *radius of the Earth* What does Gm/r² equal if you use the mass and radius for the earth?

-what method can be used to solve this type of example?

what would be the result of making the distance 5 times smaller?