$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \quad F_{c}=\frac{m v^{2}}{r} \quad a_{c}=\frac{v}{r}^{2}
$$

Centripetal Acceleration

1. A customer sits in a revolving restaurant 11 m from the center. If the customer's tangential speed is $0.0192 \mathrm{~m} / \mathrm{s}$, how large a centripetal acceleration does the customer experience?
2. NASA uses large centrifuges to study the effects of large forces on astronauts prior to their going into space. A subject in the 20-g centrifuge, which has a radius of 8.9 m ,can have a centripetal acceleration as large as $20-\mathrm{g}$, where g equals $9.8 \mathrm{~m} / \mathrm{s}$. What is the linear speed of the subject?
3. The Indianapolis Motor Speedway has four banked curves,each of which forms a quarter of a circle. Suppose a race car speeds along one of these curves with a constant tangential speed of $75.0 \mathrm{~m} / \mathrm{s}$. Neglecting the effects due to the banking of the curve,the centripetal acceleration on the car is $22.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the radius of the curve?
4. A model electric train moves along a circular track. The train has a tangential speed of $0.35 \mathrm{~m} / \mathrm{s}$ and has a centripetal acceleration of $0.29 \mathrm{~m} / \mathrm{s}^{2}$. What is the radius of the track?

Centripetal Force

5. Pat Kinch used a racing cycle to travel $21 \mathrm{~m} / \mathrm{s}$. Suppose Kinch moved at this speed around a circular track. If the combined mass of Kinch and the cycle was 92.0 kg and the average force that maintained his circular motion was 12.8 N , what was the radius of the track?
6. In 1992, a team of 12 athletes from Great Britain and Canada rappelled 446 m down the CN Tower in Toronto, Canada. Suppose an athlete with a mass of 75.0 kg , having reached the ground,took a joyful swing on the 446 m-long rope. If the speed of the athlete at the bottom point of the swing was $12 \mathrm{~m} / \mathrm{s}$, what was the tension in the rope? Neglect the rope's mass.
7. The largest diamond ever found has a mass of 621 g . If the force of gravitational attraction between this diamond and a person with a mass of 65.0 kg is $1.0 \times 10^{-12} \mathrm{~N}$, what is the distance between them?
8. The passenger liners Carnival Destiny and Grand Princess, have a mass of about 1.0×10^{8} kg each. How far apart must these two ships be to exert a gravitational attraction of 1.0 $\times 10^{-3} \mathrm{~N}$ on each other?
9. Jupiter, the largest planet in the solar system, has a mass 318 times that of Earth and a radius that is 36.4 times greater than Earth's. Calculate the magnitude of the gravitational force exerted on a 50.0 kg mass on Jupiter's surface.
\qquad

D

$$
G=6.67 \times 10^{-11}\left(\frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)
$$

$$
F=\frac{G M m}{r^{2}}
$$

Two masses are separated by a distance, and are attracted by a force of 60N.
How much gravitational force will there be between the pairs of masses below?

\qquad

A Freshman boy sits in the middle of a classroom, his mass is 45 kg . What is the force of gravitational attraction he feels towards the other 4 things in the room?

Teacher \qquad

Calculator \qquad
Desk \qquad
Girl \qquad

The $\mathbf{2 0 0} \mathbf{g}$ calculator 0.2 m from the boy

The $18 \mathbf{k g}$ desk
0.5 m from the boy

The 40 kg girl
1 m from the boy
\qquad
5. For more fun, a turkey (Mass $=\mathbf{1 1} \mathbf{k g}$) goes on a ride at the elementary school playground (radius $=\mathbf{2 . 3 m}$). Find the greatest velocity he can have if the coefficient of friction for the ride and the turkey is $\mathbf{0 . 5 5}$.

$$
V=
$$

6. A turkey (mass $=\mathbf{6 k g}$) is spinning around on an ice pond $\boldsymbol{\mu}=\mathbf{0}$, tied to a rope (length $=8 \mathrm{~m}$). How many times does the bird circle each minute, if the bird feels a centripetal acceleration of 5 g?

7. Mr. Gobbles (Mass $=\mathbf{4 k g}$) is swinging from a rope (length $=\mathbf{2 . 3 m}$). If at the bottom of the vertical circular path the speed of "Gobbles" is $5.9 \mathrm{~m} / \mathrm{s}$, find the tension in the rope.

$\mathrm{T}=$
8. What is the minimum speed to get "Gobbles" over the top?

Hint: What tension would be in the string if "Gobbles" just makes it around the circle?

\qquad
3. A strange man $(m=80 \mathrm{~kg})$ in a turkey costume goes on the Rotor ride $(r=3.2 \mathrm{~m})$. As they lower the floor of the ride, the ride completes a turn every 4.1 s . What is the necessary value of μ so that the turkey-man will not fall?
$v=$
$\mu_{\text {min }}=$

4. This turkey $(\mathrm{m}=10 \mathrm{~kg})$ is on a safer ride at the amusement park. As the ride operates, the chain creates a 75° angle with the ground, and a path with a 3.9 m radius. Find the tension in the chain, and the velocity of the turkey.

