Centripetal Force

Mr Gobbles

Centripetal Force mv^2 F_{c} * Centripetal Force (N) # Mass (kg) * Velocity (m/s) Radius (m)

MERRY-GO-ROUND CAROUSELS HAVE HORSES!

WHS

CLIENT

Friday, November 18, 11

5/26/2010

DATE

PROJECT

DATE

BIG SWING WHAT KEEPS YOU FROM FALLING?

WHS

CLIENT

Friday, November 18, 11

5/26/2010

THE ROTOR WHAT KEEPS YOU FROM FALLING?

WHS

CLIENT

Friday, November 18, 11

5/26/2010

DATE

Friday, November 18, 11

Vertical Circles -Side

Tension w = mg

Vertical Circles -Top

Tension

w = mg

Vertical Circles -Bottom

Vertical Circles Honors- Any point

rension

mg

II

3

mos, 50

Friday, November 18, 11

Honors -On a banked turn

Honors -On a banked turn

Honors -On a banked turn

Universal Gravitation

Newton's Law of Universal Gravitation

***** F Force of Gravity

M First Mass (kg)

* m second mass (kg)

* r distance (m)

 $G = 6.67 x 10^{-11} Nm^2 / kg^2$

 F_{g}

GMm

Between Students $F_g = \frac{GMm}{r^2}$

* What is the force of attraction between the 50kg boy and the 40kg girl that is 1.5m in front of him?

★ 5.93 x 10⁻⁸ N

* What forces are strong enough to hold him back?

Between Planets

 $F_g = \frac{GMm}{r^2}$

* What is the force of attraction between the 5.97x10²⁴kg Earth and the 7.24x10²²kg moon that is 3.84x10⁸m away?

* 1.955 x 10²⁰ N

* What is the result of this force?

Weight

* What is the force of attraction between the 5.97x10²⁴kg Earth and the 50kg boy that is 6.371x10⁶m away?

***490.5** N

What do you get if you divide that by his mass?

 F_{g}

* These two masses have a force between them of 100N

Cavendish Torsion Balance

- Find the velocity and centripetal acceleration of a test pilot
- ***** r= 3.4 m
- * ω = 90 rpm

Find the velocity of a car on the London Eye:

***** r= 42m

 $* \omega = 18^{\circ}/\text{min}$

- Find the velocity of a test tube in a centrifuge:
- ***** r= 6 cm
- ***** ω = 2826 rad/s

* Find the velocity of a rubber stopper:

***** r = 70cm

 $* \omega = 20 rev/12 s$

