FLUIDS and MATERIALS

Order the drink with the greatest density.
 What do you drink?
 Orange Drink
 Milkshake

Density

Mass / Volume

g/cm³
 water = 1g/cm³
 kg/m³
 water = 1000 kg/m³

NOT the same as how "thick" something is

M

Sample Problem Calculate the density

- Oiameter = 4 cm
- Height = 15 cm
- Mass = 625 g

• $V = \pi r^2 h$ • $V = 188.4 \text{ cm}^3$ • $\rho = 3.31 \text{ g/cm}^3$

What do you think? Which one applies the greatest force to the ground below?

Pressure Force / Area F'**PSI** $ON/m^2 = Pascal (Pa)$ **mmHg = Torr** 1 ATM = 14.7 PSI 101.3 kPa **760 Torr**

Sample Problem

Calculate the pressure under a steel block 15 x 20 x 3 cm.

(when resting on its largest face)

Objective Density = 7.86 g/cm³

Sample

- Density = 7.86 g/cm³
- \bigcirc Volume= 15 x 20 x 3 = 900 cm³ (match units)
- Mass = $\rho \times V = 7.86 \text{ g/cm}^3 \times 900 \text{ cm}^3 = 7,074 \text{ g}$
- Weight = 7.074kg x 9.8 = 69.33 N
- Area = $0.15m \times 0.2m = 0.03 m^2$ (match units)
- Pressure = 2,310 Pa = 2.31 kPa

5 feet underwater in a pool
pressure on the table
or pressure on the swimmer
would it matter if the pool were replaced by a large lake?

How Many Straws?

How Many Straws?

Barometer

Pressure at a Depth $P = \rho g h$

Pressure caused by the weight of the fluid above an area

Which Pressure?

• Gauge • the applied pressure

Absolute
 the total pressure

Sample

3 meters underwater... what is the
Gauge Pressure
(1000kg/m³)(9.8m/s²)(3m)
29,400 Pa = 29.4 kPa
Atmospheric = 101 kPa
Absolute pressure = 130.4 kPa

Why wouldn't a metal boat sink?

Archimedes Principle

There exists, on any object immersed in a fluid, a buoyant force upward equal to the weight of the fluid displaced

A Brick on the bottom

Equal Weight

Sample Problem

What is the apparent weight of a small block of Copper at the bottom of a tank of water?

• Copper $\rho = 8.96 \text{ g/cm}^3$ • 4 x 5 x 8 cm

Apparent Weight

Copper $\rho = 8.96 \text{ g/cm}^3$ $4 \times 5 \times 8 \text{ cm}$ $v = 160 \text{ cm}^3$ $m = \rho v = 1433.6g$ $w = 1.43 \times 9.8 = 14.05 \text{ N}$

$$W_a = W_g - F_b$$

= 14.05 - 1.57
= 12.48 N

Water

 $\rho = 1.0 \text{ g/cm}^3$ 4 x 5 x 8 cm v= 160 cm³ m= ρ v = 160 g w=0.16 x 9.8 = 1.57 N

What would happen...

...to the water level in the pool if the metal blocks inside the boat were thrown overboard?

What would happen...

...to the water level in the pool if the metal blocks inside the boat were thrown overboard?

Think about the displaced water

of the pool Enough water to support: 300N boat

360 N water

<u>less than</u> the 60N metal maybe 320 N water

Enough water to support:

300N boat + 60N metal

above the "regular" level

the water level falls the boat rises in the water

Pascal's Principle

Pressure applied to an enclosed fluid is transmitted undiminished to every part of the fluid, as well as to the walls of the container.

Sample

A car weighs 540 N, and sits on the larger piston of a hydraulic lift. The diameter of the larger side is 1.5 m, the smaller is 0.5 m.

How much force is required to lift the car?

Sample Problem

- A car weighs 540 N, and sits on the larger piston of a hydraulic lift. The diameter of the larger side is 1.5 m, the smaller is 0.5 m.
- How much force is required to lift the car?

 $\frac{540}{\pi (.75)^2} = \frac{f}{\pi (.25)^2}$

f = 60 N
1/9 of the Force
1/3 of the radius

Remember Machines

Can't be more than 100% efficient

Oreater force ⇒ smaller distance

ratio of areas

Constant volume

Archimedes Principle

There exists, on any object immersed in a fluid, a buoyant force upward equal to the weight of the fluid displaced

Gravity

Buoyant

pparen

Pascal's Principle

Pressure applied to an enclosed fluid is transmitted undiminished to every part of the fluid, as well as to the walls of the container.

Water Pressure from a Tank

How fast would the water come out from the bottom?

Bernoulli's Theorem

A fluid exerts a lower pressure at higher velocities Sum of 3 types of pressure remains constant

> P (think applied) ρgh (think potential) $\frac{1}{2}$ ρν² (think kinetic)

Equation of Continuity

Bernoulli

 $P + \frac{1}{2}\rho v^2 + \rho g h$

G#46

Water at a gauge pressure of 3.8 atm at street level flows into an office building at a speed of 0.6 m/s through a pipe 5.0 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 18 m above, where the faucet has been left open. **Calculate the flow velocity** and the gauge pressure in such a pipe on the top floor.

Water at a gauge pressure of **3.8 atm** at street level flows into an office building at a speed of 0.6 m/s through a pipe 5.0 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 18 m above, where the faucet has been left open. Calculate the flow velocity and the gauge pressure in such a pipe on the top floor. Faucet $A_a v_a = A_b v_b$ Тор Bottom 18 m $\pi (1.3)^2 V_{top} = \pi (2.5)^2 (0.6)$ V_{top} = 2.219 m/s P=3.8 atm

Water at a gauge pressure of **3.8 atm** at street level flows into an office building at a speed of **0.6 m/s** through a pipe **5.0 cm** in diameter. The pipe tapers down to **2.6 cm** in diameter by the top floor, **18 m** above , where the faucet has been left open. Calculate the flow **velocity** and the gauge **pressure** in such a pipe on the top floor.

$$P_{a} + \rho g h_{a} + \frac{1}{2} \rho v_{a}^{2} = P_{b} + \rho g h_{b} + \frac{1}{2} \rho v_{b}^{2}$$
Bottom
$$P + \rho g h + 0.5 \rho v^{2}$$
3.8atm + (1000)(9.8)(0) + (0.5)(1000)(0.6^{2})
383,800 + 0 + 180
Total = 383,980 Pascal (Pa)
$$P + \rho g h + 0.5 \rho v^{2}$$

$$P + (1000)(9.8)(18) + (0.5)(1000)(2.219^{2})$$

$$P + 176,400 + 2462$$

$$P = 205,118 Pa = 2.03 atm$$

Fauc

18 m

How fast does water flow from a hole at the bottom of a very wide, 4.6-m-deep storage tank filled with water?

G. #38

How fast does water flow from a hole at the bottom of a very wide, 4.6-mdeep storage tank filled with water?

$$P_{a} + \rho g h_{a} + \frac{1}{2} \rho v_{a}^{2} = P_{b} + \rho g h_{b} + \frac{1}{2} \rho v_{b}^{2}$$

$$v_b = \sqrt{2g(h_a - h_b)}$$

Bernoulli's Theorem

Bernoulli's Theorem

