Heat Transfer

H Heat Transfer rate

1

My Old Cat

kgold = **315** W/mK **A T**_H

My Great-Great Grandfather

$h = 600 W / m^2 K$

Convection

All the rest

Convection

Radiation

Conduction

Conduction Convection Radiation

Radiation

$R = e\sigma T^4$

- R intensity W/m²
- \cdot R = H/A
- · e emissivity
- $\sigma = 5.67 \text{ x} 10^{-8} \text{ W/m}^2 \text{ K}^4$

Practice Problem

A piece of metal rests on a hot plate with a temperature of 140 °C. The room temperature is maintained at 20 °C. A temperature sensor at the top of the metal reads 110 °C. The metal measures 2 x 10 x 15 cm.

A] How many Joules conduct through the metal every minute?

B] What is the heat flow rate from convection from the top of the plate?

C] What is the heat flow rate from radiation from the top of the plate? [ignore the energy the metal absorbs from the surroundings]

Constants

200 J/kg °C	SPECIFIC HEAT OF SOLID
500 J/kg °C	SPECIFIC HEAT OF LIQUID
300 J/kg °C	SPECIFIC HEAT OF GAS
6000 kg/m ³	DENSITY AT 300K
100,000 J/kg	LATENT HEAT OF FUSION
400,000 J/kg	LATENT HEAT OF VAPORIZATION
3.3 x 10 ⁻⁴ /°C	COEFFICIENT OF LINEAR EXPANSION
9.9 x 10 ⁻⁴ /°C	COEFFICIENT OF VOLUMETRIC EXPANSION
880 J/ m s °C	COEFFICIENT OF CONDUCTION
0.35	EMISSIVITY
7400 I/2 °C	COEFFICIENT OF CONVECTION
1400 J/ S M ² C	FLAT TOP SURFACE
450 °C	MELTING POINT
600 °C	BOILING POINT

A piece of metal rests on a hot plate with a temperature of 140 °C. The room temperature is maintained at 20 °C. A temperature sensor at the top of the metal reads 110 °C. The metal measures 2 x 10 x 15 cm.

A] How many Joules conduct through the metal every minute?

COEFFICIENT OF CONDUCTION 880 J/ m s °C

A piece of metal rests on a hot plate with a temperature of 140 °C. The room temperature is maintained at 20 °C. A temperature sensor at the top of the metal reads 110 °C. The metal measures 2 x 10 x 15 cm.

B] What is the heat flow rate from convection from the top of the plate?

COEFFICIENT OF CONVECTION
FLAT TOP SURFACE7400 J/ s m² °C

A piece of metal rests on a hot plate with a temperature of 140 °C. The room temperature is maintained at 20 °C. A temperature sensor at the top of the metal reads 110 °C. The metal measures 2 x 10 x 15 cm.

C] What is the heat flow rate from radiation from the top of the plate? [ignore the energy the metal absorbs from the surroundings]

- $R = e\sigma T$ R = H/A $H = eA\sigma T^{4}$
- EMISSIVITY
 0.35

 σ = 5.67 x10⁻⁸ W/m² K⁴

timer/Hot Pla

Thermal Expansion

Linear Expansion $\Delta L = Lo \alpha \Delta T$

change of length original length change of temperature coefficient of linear expansion A bar of metal has a length of 70 cm at 22 $^\circ C$. What is the final length of the bar when it is heated to 220 $^\circ C$?

$\Delta L = Lo \alpha \Delta T$

COEFFICIENT OF LINEAR EXPANSION 3.3 x 10⁻⁴ / °C

MELTING POINT 450 °C

Expansion

Expansion Joints An oven thermometer A bimetallic strip

Take a guess

• Area Expansion • $\Delta A = Ao [2\alpha] \Delta T$

classic thermometer

20

20 20

expansion of Hg

Thursday, March 22, 12

19

Volumetric Expansion • $\Delta V = V \beta \Delta T$ $\beta = 3\alpha$ mL 0 +5% 600 mL PYREX® 100 300 200 -. 200 300 No. 1003

With the Volumetric Constants

Material	Coefficient of Linear Expansion, α (C°) ⁻¹	Coefficient of Volume Expansion, β (C°) ⁻¹
Solids		
Aluminum	25×10^{-6}	75×10^{-6}
Brass	19×10^{-6}	56×10^{-6}
Copper	17×10^{-6}	50×10^{-6}
Gold	14×10^{-6}	42×10^{-6}
Iron or steel	12×10^{-6}	35×10^{-6}
Lead	29×10^{-6}	87×10^{-6}
Glass (Pyrex [®])	$3 imes 10^{-6}$	9×10^{-6}
Glass (ordinary)	9×10^{-6}	$27 imes 10^{-6}$
Quartz	$0.4 imes 10^{-6}$	1×10^{-6}
Concrete and brick	pprox 12 $ imes$ 10 ⁻⁶	$pprox 36 imes 10^{-6}$
Marble	$1.4 - 3.5 \times 10^{-6}$	$4 - 10 \times 10^{-6}$
Liquids		
Gasoline		950×10^{-6}
Mercury		180×10^{-6}
Ethyl alcohol		1100×10^{-6}
Glycerin		$500 imes 10^{-6}$
Water		$210 imes 10^{-6}$
Gases		
Air (and most other gases at atmospheric pressure)		3400×10^{-6}
Copyright ©	2005 Pearson Prentice Hall, I	nc.

A beaker contains 300ml of fluid at 10 °C. What does the beaker read when they are heated to 90 °C?

$\Delta V = V \circ \beta \Delta T$

FLUID COEFFICIENT OF VOLUMETRIC EXPANSION**30 x 10-5 /°C**GLASS COEFFICIENT OF VOLUMETRIC EXPANSION**9 x 10-6 /°C**

 $\Delta V = (300) (80) (30 \times 10^{-5})$ $\Delta V = 7.2 \text{ mL of fluid}$ $V_{f} = 307.2 \text{ mL total}$

300 -

io. 1003

What part of the beaker expands up to hold the 307.2 mL of fluid? $\begin{aligned} \Delta V &= Vo\beta\Delta T \\ V_{f} = Vo + \Delta V \\ V_{f} = Vo [1 + \beta\Delta T] \end{aligned}$

 $307.2 = Vo (1+ (9 \times 10^{-6})(80))$ 307.2 = Vo (1+ 0.00072)307.2 = Vo (1.00072)306.9 = Vo

FLUID COEFFICIENT OF VOLUMETRIC EXPANSION30 x 10-5 /°CGLASS COEFFICIENT OF VOLUMETRIC EXPANSION9 x 10-6 /°C

Steam Generator

$\Delta L = L_0 \alpha \Delta T$

CALTERS ON NOT MAKENSE IN MATER

Meter Stick

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

₩1# 0.01mm

JSILVERLI

Micrometer

Thermistor

Digital Multimeter DMM

Digital Multimeter DMM

Conversion

THERMISTOR CONVERSION TABLE: Temperature versus Resistance

Res. (Ω)	Temp. (°C)	Res. (Ω)	Temp. (℃)	Res. (Ω)	Temp. (°C)	Res. (Ω)	Temp. (°C)
351,020	0	95,447	26	30,976	52	11.625	78
332,640	1	91,126	27	29,756	53	11,223	79
315,320	2	87,022	28	28,590	54	10,837	80
298,990	3	83,124	29	27,475	55	10,467	81
283,600	4	79,422	30	26,409	56	10,110	82
269,080	5	75,903	31	25,390	57	9,767.2	83
255,380	6	72,560	32	24,415	58	9,437.7	84
242,460	7	69,380	33	23,483	59	9,120.8	85
230,260	8	66,356	34	22,590	60	8,816.0	86
218,730	9	63,480	35	21,736	61	8,522.7	87
207,850	10	60,743	36	20,919	62	8,240.6	88
197,560	11	58,138	37	20,136	63	7,969.1	89
187,840	12	55,658	38	19,386	64	7,707.7	90
178,650	13	53,297	39	18,668	65	7,456.2	91
169,950	14	51,048	40	17,980	66	7,214.0	92
161,730	15	48,905	41	17,321	67	6,980.6	93
153,950	16	46,863	42	16,689	68	6,755.9	94
146,580	17	44,917	43	16,083	69	6,539.4	95
139,610	18	43,062	44	15,502	70	6,330.8	96
133,000	19	41,292	45	14,945	71	6,129.8	97
126,740	20	39,605	46	14,410	72	5,936.1	98
120,810	21	37,995	47	13,897	73	5,749.3	99
115,190	22	36,458	48	13,405	74	5,569.3	100
109,850	23	34,991	49	12,932	75	<u></u>	
104,800	24	33,591	50	12,479	76		
100,000	25	32,253	51	12,043	77		
2.1.1010*				5			

118.8 kΩ • 45.0 kΩ

The Tables

Material?	L unknown	R 1	R 2	ΔL

-				Λ Τ	α	X	%
		■1	■2		unknown	accepted	Error
	1						
	2						
	3						