Magnetism Day 3 Flux

Catching some rain

fill the bucket faster...

same volume but wider opening?

fill the bucket faster...

same bucket but more rain?

fill the bucket faster...

same bucket but from the side?

Magnetic Flux

$\Phi_m = AB\cos\theta$

Init of magnetic flux is the weber, Wb.

Calculate Flux

Magnetic Field = 4 Tesla radius = 30 cm $Area = 0.2827 \text{ m}^2$ straight into the loop \Rightarrow angle = 0 $\Phi = AB \cos \theta$ Φ = 1.131 Wb

Induced EMF (voltage)

Lenz's Law

 "An induced current is always in such a direction as to oppose the motion or change causing it"

Opposite directions

Opposite directions

- The induced current will oppose the change in magnetic flux.
- If a North pole is pushed into the loop,
 the hand will try to push it back out

S

- The induced current will oppose the change in magnetic flux.
- If a North pole is pushed into the loop,
 the hand will try to push it back out

- The induced current will oppose the change in magnetic flux.
- If a south pole is pushed in, the hand tries to push a North pole in to balance.

- The induced current will oppose the change in magnetic flux.
- If a south pole is pushed in, the hand tries to push a North pole in to balance.

Faraday's law of induction:

Bigger voltages with faster or greater changes in flux.

Induced Voltage

 $\times \times \times \times \times \times \times$

 A circular loop, 10 cm in diameter, is placed in a uniform field of 1.5 T. Find the flux through the loop.
 Φ = 0.0118 Wb

* $\Phi = AB \cos \theta$ * $\Phi = \pi (0.05^2)(1.5)(\cos 0)$ * $\Phi = 0.0118$ Wb

Induced Voltage

- A circular loop, 10 cm in diameter, is placed in a uniform field of 1.5 T. Find the flux through the loop.
 - $\Phi = 0.0118 \text{ Wb}$
- If the coil is stretched to 24 cm diameter in 0.07 s, what is the induced voltage?

• $\Phi = AB \cos \theta$ • $\Phi = \pi(0.12^2)(1.5)(\cos \theta)$ • $\Phi = 0.0678 \text{ Wb}$

Induced Voltage

 A circular loop, 10 cm in diameter, is placed in a uniform field of 1.5 T. Find the flux through the loop.

 $\Phi = 0.0118 \text{ Wb}$

If the coil is stretched to 24 cm diameter in 0.07 s, what is the induced voltage?

 $\Phi = 0.0678 \text{ Wb}$