WAVE PROPERTIES 2012 Lecture Notes

WAVES AND HARMONIC MOTION

SIMPLE HARMONIC MOTION

Any vibrating system where the restoring force is proportional to the negative of the displacement is in simple harmonic motion (SHM), and is often called a simple harmonic oscillator.

WAVE

 A periodic transfer of energy through a material or field with no net displacement to the medium.

MEDIUM

• The "material" the wave is passing through.

PULSE / TRAVELING WAVE

STANDING WAVE

• The "parts" of the wave are stationary

REFLECTED PULSE

REFLECTION FROM A FIXED END

REFLECTION AT A FREE BARRIER

NODES / ANTINODES

- Nodes locations in a standing wave with **zero** displacement
- Antinodes locations in a standing wave with maximum displacement

PERIOD

Period - the time required for each cycle of motion.

FREQUENCY

- Frequency the number of cycles per second.
- Units "per second", s⁻¹, or Hertz (Hz)

CREST / TROUGH

- Crest the highest point in a wave
- Trough the lowest point
- changes with reference point

AMPLITUDE

- Amplitude The maximum displacement in a wave
- Units m
 - some applications need the "peak to peak" amplitude

WAVELENGTH

- Wavelength the distance (length) of a complete wave
- Units m

WAVE SPEED OR VELOCITY $v = f\lambda$

- Velocity as it was before m/s
- frequency Hz
- Wavelength m
- Depends on the medium
- Speed of Sound in Air 341 m/s
- Speed of Light in a Vacuum 3.0×10^8 m/s

TRANSVERSE AND LONGITUDINAL WAVES

WHY DID YOU SEE NODES?

PRINCIPLE OF SUPERPOSITION

THE EASIEST CASE

EASY CASE

EASY CASE

EVEN IFTHEY'RE NEGATIVE

STILL PRETTY EASY CASE

STILL PRETTY EASY CASE

Friday, January 6, 12

STILL PRETTY EASY CASE

ADD ALL THE HEIGHTS

MORE REAL

MORE REAL

WHAT HAPPENS AFTERWARDS

PENDULUM LAB

WAVE-LIKE GRAPH

THE PENDULUM

$T = 2\pi \sqrt{\frac{l}{g}}$

- An Easy Equation
- Simple Harmonic Motion

PENDULUM LENGTH

• What is the length of a pendulum that has a frequency of 0.25 Hz here on Earth?

 $4=2\pi_{1}$ $\frac{4}{2\pi}$ 0.64 = $0.406 = rac{l}{9.8}$ 3.97m = l

MASS ON A SPRING

 $T = 2\pi \sqrt{m/k}$

- Simple Harmonic Motion
- T = Period(s)
- \cdot m = Mass (kg)
- $k = Spring Constant (N/m^2)$

MASS ON A SPRING LAB

Friday, January 6, 12

SPRING OSCILLATIONS

• What is the frequency of a 150g mass that hanging from a spring with a 35 N/m spring constant?

 $T = 2\pi \sqrt{\frac{0.15}{35}}$

 $T = 2\pi \sqrt{0.0043}$

T = 0.411s

f = 2.43 Hz

SPRING HARMONICS

