

Prefixes You Must Know

Power of 10	Exponent	Prefix	Symbol	Common Name
9	10 9	giga	G	billion
6	10 6	mega	М	million
3	10 ³	kilo	k	thousand
2	10 ²	hecto	h	hundred
1	10 1	deca	da	ten
-1	10 -1	deci	d	tenth
-2	10 -2	centi	С	hundredth
-3	10 -3	milli	m	thousandth
-6	10 -6	micro	μ	millionth
-9	10 -9	nano	n	billionth

2

that's for kids.

3

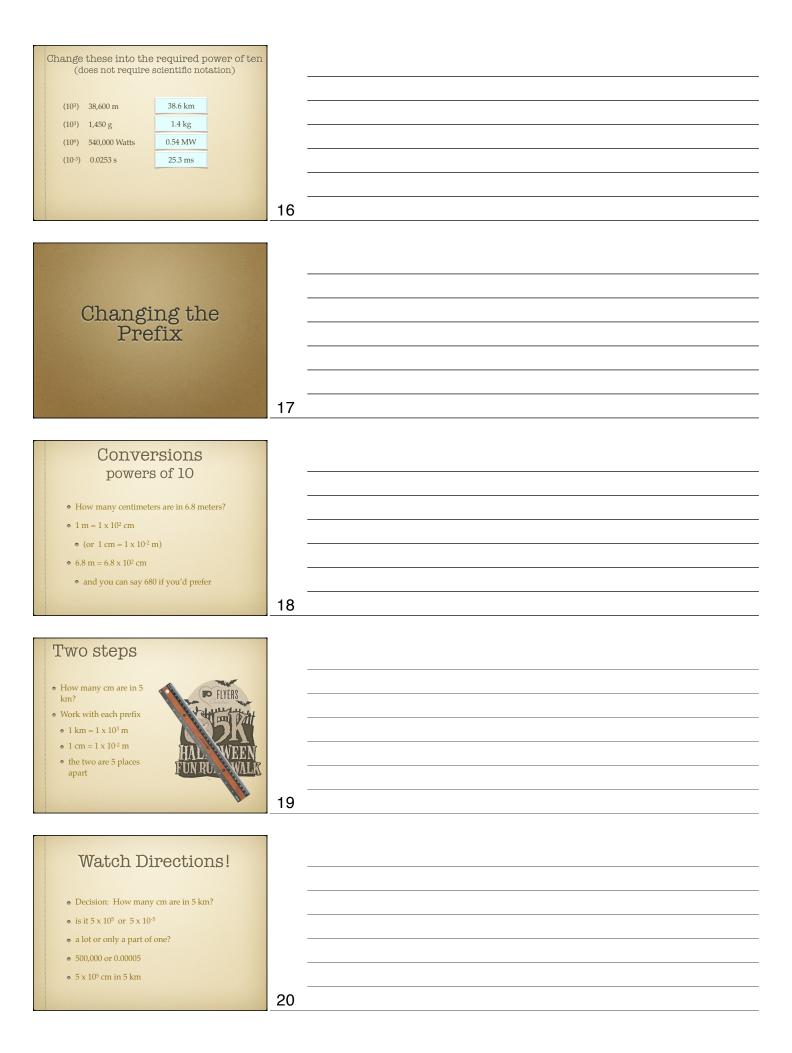
Scientific Notation

- A number in scientific notation looks like...
 - $4.25 \times 10^3 \text{ m}$
- - Must start with an integer from 1 to 9
 - 0.21 x 10 ² isn't quite right
- Power of 10
- - one of the most important parts

4

Easier to Read

300,000,000**.**m/s


- the speed of light is 300,000,000 meters each second
- Move the decimal count how far it goes
- Use that for the exponent

ì	r		•
ı	۲	٠	۱
١	L		,

Which is Easier to Read? 300,000,000 m/s or 3 x 10 ⁸ m/s	6
Easier to Read 0.0000065 m • Really small numbers work too • Find the decimal • Move the decimal - count how far it goes • This time, the exponent is negative	7
Which is Appropriate? 0.0000065 m or 6.5 x 10 ⁻⁶ m or 6.5 μm	8
Not as Far To Go 8500 x 10 ⁶ g • This number isn't quite in scientific notation • Find the decimal • Move the decimal & count how far it goes • Change the exponent by that much	9
$8500 \times 10^6 \text{ g}$ • You moved the decimal 3 times • The number "looks" smaller • The exponent must become bigger by 3 $8.5 \times 10^9 \text{ g}$ $8.5 \text{ Gg} 8.5 \times 10^6 \text{ kg}$	10

Practice 11 Change these into scientific notation 38,600 m 3.86 x10⁴ m 157,300 s 1.573 x10⁵ s 147 cm 1.47 x10² cm 9.3 x10⁷ miles 93,000,000 miles 12 Change these into scientific notation 0.715 kg 3.86 x10⁴ m 1.573 x10⁵ s 0.00083 g 0.000025 s 1.47 x10² cm 9.3 x10⁷ miles 0.00083 m 13 Change these OUT OF scientific notation 9,300,000 kg 9.3 x 106 kg 3.75 x 10² m 375 m $8 \times 10^4 \, \text{N}$ 80,000 N $2.39 \times 10^{18} \,\mathrm{s}$ 2,390,000,000,000,000,000 14 Change these OUT OF scientific notation 4.8 x10 -5 kg 0.000 048 kg 7.21 x10 ⁻³ m 0.007 21 m 3 x10 -2 N 0.03 N 5.9 x10 ⁻⁹ s 0.000 000 059 s

15

Math with Exponents

21

Multiplication

- What is 640,000 times 20,000?
- (6.4 x 10⁵) x (2 x 10⁴)
- multiply the values $(6.4 \times 2 = 12.8)$
- Add the exponents 5 + 4 = 9
- state your answer 12.8 x 10⁹

22

Division

- (6.4 x 10⁵) / (2 x 10⁴)
- divide the values (6.4 / 2 = 3.2)
- subtract the exponents 5 4 = 1
- state your answer 3.2 x 10¹
 - Unless you MUST use scientific notation, simplify your answer to 32

23

Practice

 $(7.2 \times 10^4) \times (3 \times 10^3)$

21.6 x10⁷ 25.2 x10³ 2.16 x10⁸

(4.2 x 10⁵) x (6 x 10⁻²) (6.3 x 10⁴) / (3 x 10³)

2.1 x10¹

2.52 x10⁴ 2.1 x10¹ 8.0 x10⁶

(4.8 x 10⁵) / (6 x 10⁻²)

0.8 x10⁷

24

What is... 1 dollar plus 1 dime?

- Is it 2 of anything?
- 1.10 dollars
- 11 dimes
- How do you get these answers?

\sim	_	
ر.	-	

Addition • $(6.4 \times 10^5) + (2 \times 10^4)$ • Pick one to change • $(64 \times 10^4) + (2 \times 10^4)$ • 66×10^4 • or 6.6×10^5

26			

Practice

(3.5 x 10⁴) - (2.8 x 10³)

(5 x 10⁶) + (0.51 x 10⁸)

(6.0 x 10⁻³) + (5.0 x 10⁻⁴)

(5.0 x 10⁹) + (3.0 x 10⁻¹)

5,000,000,000.3

Does that last one seem strange to solve?

27