Kinetic and
Potential

Energy

Kinetic and gravitational potential
energy are interchangeable.

The total amount of energy in an
isolated system is conserved.

PHYSICS AROUND US . . . The Roller Coaster

hile visiting your local amusement park,
w you and your friends decide to take a ride
on the roller coaster. You climb into a car,
strap yourself in, and wait while an electric motor lifts
the car slowly, overcoming the force of gravity that tries
to pull you back down. Then you experience that breath-
less moment at the top, when you are poised to plunge
downward but haven’t quite started the scary descent.
With a whoosh of air (and perhaps a few screams
from some riders), you plummet back toward Earth,
careening faster and faster as you descend. At the last
moment, the track changes direction and you start up
again, repeating the sequence until the ride ends.
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You may think of the ride as just good fun, but
you have actually transformed yourself into a living
demonstration of one of the most important features
of nature—the transformation of energy from one
form to another. This phenomenon underlies interac-
tions throughout all of science, from the tiniest parti-
cles to the largest galactic clusters, from biology to
chemistry to geology, from the sunlight that wakes you
up in the morning to the electric lamp you turn off be-
fore going to sleep at night. The interchangeability of
energy from one form to another is a powerful idea
whose many implications we explore in the next sev-
eral chapters.
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) WORK, ENERGY, AND POWER:
WORDS WITH PRECISE MEANINGS

Whenever you ride in a car, climb a flight of stairs, or just take a breath, you use
energy. At this moment, trillions of cells in your body are hard at work turning
yesterday’s food into the chemical energy that keeps you
alive today. Energy in the atmosphere is generating sweep-
ing winds and powerful storms, while the ocean’s energy
drives mighty currents and incessant tides. Meanwhile,
deep within the Earth, energy in the form of heat is mov-
ing the very continent on which you are standing.

Energy is all around you—in the ever-shifting atmo-
sphere and restless seas, in simple bacteria and mighty red-
wood trees, in brilliant sunlight and shimmering moolight.
Energy affects everything in the physical world, and the
laws that govern its behavior are among the most impor-
tant and overarching concepts in science.

In every situation where energy is expended you will
find one thing in common. If you look at the event closely
enough you will find that, in accord with Newton’s laws
of motion (Chapter 4), a force is exerted on an object to make it move. When A turbulent sea is one of
your car burns gasoline, the fuel’s energy ultimately turns the wheels of your car, ~the greatest sources of
which then exert a force on the road; the road exerts an equal and opposite force SASIE oD el
on the car, pushing it forward. When you climb the stairs, your muscles exert a
force that pushes down on the stairs, enabling you to move upward against grav-
ity. Even in your body’s cells, forces are exerted on molecules in chemical reac-
tions. Energy, then, is intimately connected with the application of a force.

In everyday conversation, we may speak of a small child’s seemingly inex-
haustible energy, of a song that sounds energetic, or of an athlete being ener-
gized. In physics, the term energy has a precise definition that is somewhat
different from the ordinary meaning. However, to see what physicists mean when
they talk about energy, we must first introduce the concept of work. Applied force

Work

In the lexicon of physics, we say that work is done
whenever a force is exerted over a distance. When you
picked up this book, for example, your muscles ap-
plied a force equal to the weight of the book over a
distance of a foot or so. You did work (Figure 8-1).

This definition of work differs considerably from
everyday use. From a physicist’s point of view, if you
accidentally drive into a stone wall and smash your
fender, the wall does work because a force deformed
the car’s metal a measurable distance. On the other
hand, a physicist would say that you haven’t done any
work if you spent an hour in a futile effort to move a large boulder, no matter  g,c,pe 8-1. Work is done
how tired you got. Even though you have exerted a considerable force, the dis-  \whenever a force is exerted
tance over which you exerted it is zero. over a distance.

Distance
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There’s another way in which a force can do no work. Imagine carrying a
briefcase as you walk along a flat street at a steady pace. In order to hold the

W=Fxd
Work (joules)

Distance (meters)

Ficure 8-2. The direct rela-

tionship between work and

distance illustrated in graphi- 1. In words:
cal form.

briefcase, your hand exerts an upward force on it. But the
briefcase moves in a direction perpendicular to that force, so
that force does no work! You should keep in mind that when
we talk about a force doing work, we really mean the part
of the force that points in the direction of the motion. If there
is no motion, or if the force is perpendicular to the motion,
the work is zero.

It’s also possible for work to be negative. For example, the
gravitational force exerted on you as you climb a flight of stairs
does negative work because you’re moving up and the force
is pulling down. If the force and the motion are in opposite
directions, then the work done by that force is negative.

Physicists provide an exact mathematical definition to
their notion of work.

Work is done whenever a force is exerted over a distance. The amount of
work done is proportional to both the force and the distance.

2. In an equation with words:

Work (in joules) = Force (in newtons) X Distance (in meters)

where a joule is the unit of work, as defined next.

3. In an equation with symbols:

W=FXd

The direct relationship between work and distance is illustrated in Figure 8-2. In
practical terms, even a small force can do a lot of work if it is exerted over a long

distance.

Using this equation, we can see that the units of work are equal to a force
times a distance. In the metric system of units, in which force is measured in
newtons and distance in meters, work is measured in newton-meters. This unit is
given the special name joule, after the English scientist James Prescott Joule
(1818-1889), one of the first people to understand the properties of energy. One
joule (abbreviated 1 J) is defined as the amount of work done when you exert a
force of 1 newton through a distance of 1 meter:

1 joule of Work = 1 newton of Force X 1 meter of Distance

Working Against Gravity

How much work do you do when you lift a 12-kilogram suitcase 0.75 meters off
the ground (Figure 8-3)?

REASONING AND SOLUTION: We must first calculate the force needed to lift a
12-kilogram mass before we can determine the work done. This force is equal to
the weight of the suitcase. From Chapter 5, we know that to lift a 10-kilogram
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mass against the acceleration of gravity (9.8 meters per second per
second) requires a force given by:

Force = Mass X g
=12 kg X 9.8 m/s?
= 117.6 newtons

Then, from the equation for work,

Work = Force X Distance
= 117.6 newtons X 0.75 meter
= 88.2 joules

In North America, work is often measured in
the English system of units (see Appendix A),
where force is recorded in pounds and distance in
feet. Work is thus measured in a unit called the foot-
pound (usually abbreviated ft-1b), which corresponds to

the work done in lifting a weight of 1 pound 1 foot upward against the force of ~FIGURE 8-3. Lifting a suitcase
s @ off the ground requires you to

do work against gravity.

Lifting Weights

It’s not unusual for a professional athlete to be able to lift as much as 400 pounds
(1780 newtons). Suppose that a football linebacker, lying on his back, pushes a
400-pound barbell from his chest to a position in which his arms are fully ex-
tended upward (Figure 8-4). (This action is called a “bench press” and gives rise
to the sporting slang expression that an athlete can “press” a certain weight.)
Estimate the amount of work he does in both SI and the English system.

REASONING: To calculate the work done, we need to multiply force times distance.
The force in this problem is 400 pounds, but the distance isn’t given. That means
we have to estimate it. The athlete starts with the weight on his chest and keeps @

_-F

pushing until his arms are extended. This means that the distance over which the
force is applied must be about the length of his arms. The length of a large man’s
arms is about 3 feet (in fact, the yard in the English system of units was origi-
nally defined as the distance from a man’s nose to the end of his hand). So let’s 400 pounds
take the distance in the problem as 3 feet.

400 pounds

(a) (b)

FIGURE 8-4. Athletes strengthen their muscles by working against gravity, for example
by lifting weights. No pain, no gain!
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soLUTION: Work is force times distance, SO

W = F (in pounds) X d (in feet)
= 400 pounds X 3 feet
= 1200 ft-1b

Looking in Appendix A, we see that there are 1.356 joules for each foot-pound
of energy. Consequently, this amount of work in SI is

W = 1200 ft-1b X 1.356 joules/ft-1b
= 1627 joules

Note once again that in this equation we can cancel units (in this case ft-1b) to
be sure that the units of our answer are correct. @

Compare the answers for Examples 8-1 and 8-2. Lifting a 12-kg suitcase
1.5 meter requires about 176 J of work; lifting a 400-1b barbell 3 feet (which is
almost 1 meter) requires over 1600 J of work. Does this seem reasonable to you?
(Note that 1 kilogram has a weight of about 2.2 pounds when g = 9.8 m/s?.)

Energy

Energy is defined as the ability to do work. If a system is capable of exerting a
force over a distance, then it possesses energy. The amount of a system’s energy,
which can be recorded in joules or foot-pounds (the same units used for work),
is a measure of how much work the system might do. When you run out of en-
ergy, you simply can’t do any work.

Energy is one of the most useful concepts in all of science, from both theo-
retical and practical viewpoints. Determining the energy of a system is often the
key step in analyzing its future behavior, and we're all familiar with the impor-
tance of energy in our modern industrial society. We examine details of energy
in the rest of this chapter and again in later chapters. Examples of energy in com-
mon situations appear in Physics and Daily Life on p. 168.

Power

Physicists define power as the rate at which work is done, or, equivalently, the
rate at which energy is expended. In order to complete a physical task quickly,
you must generate more power than if that same amount of work is done more
slowly (Figure 8-5). If you run up a flight of stairs, your muscles need to gener-
ate more power than they would if you walked up that same flight. A power hit-
ter in baseball swings the bat faster, converting the energy in his muscles more
quickly than most other players.
Power can be expressed in an exact form.

1. In words:

Power is the amount of work done divided by the time it takes to do it.

Power is the energy expended divided by the time it takes to expend it.
2. In equations with words:

Work (in joules)
Time (in seconds)

Power (in watts) =
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Energy (in joules)

or Power (in watts) = —; -
( ) Time (in seconds)
where the watt is the unit of power, as defined next.
3. In equations with symbols:

w
p=X =
1 t

or P=

In the metric system power is measured in watts, a unit named after James
Watt (1736-1819), a Scottish inventor who helped to develop the modern steam
engine that powered the Industrial Revolution. The watt, a unit of measurement
that you probably encounter every day, is defined as the expenditure of 1 joule
of energy in 1 second:

1 joule of Energy
1 second of Time

1 watt of Power =

When you change a lightbulb, for example, you look at the rating of the new
bulb to see whether it’s 60, 75, or 100 watts. This number provides a measure of
the rate of energy that the lightbulb consumes when it is operating. Almost any
electric hand tool or appliance in your home is also labeled with a power rating
in watts. The unit of 1000 watts (corresponding to an expenditure of 1000 joules
per second) is called a kilowatt, a commonly used measurement of electrical
power. The English system, on the other hand, uses horsepower, which is defined
as 550 foot-pounds per second (see Physics in the Making, page 169).

FIGURE 8-5. Power is the
rate at which work is done,
or, equivalently, the rate at
which energy is expended. If
Ben runs up two flights of
stairs in the same time it
takes Al to walk up one
flight, then Ben expends
twice as much power as Al.



Energy is everywhere, whether kinetic energy of a moving body, gravitational potential energy from an
object raised off the ground, chemical energy in food—you can’t do anything or be anything without it.
And it never disappears completely, but just transforms from one kind of energy to another. Altogether,
a really useful and remarkable concept.

Chemical energy (glucose)
_ Kinetic energy of 3
moving ball

Energy and sound
waves as people talk

e

§
Kinetic ener: f }
lr?ni\lling arr%y 2 Acoustic energy
(sound)

Potential energy of
body above ground

The equation defining power as energy divided by time may be rewritten as:
Energy (in joules) = Power (in watts) X Time (in seconds)

This equation says that if you know how much power you are using and how
long you are using it, you can calculate the total amount of energy expended.
The electric company calculates your electric bill in this way. The equation tells
us that if you use 100 watts of power for 1 hour (by having a lightbulb turned
on, for example), you have expended 100 watt-hours of energy, or one-tenth of
a kilowatt-hour. This measurement of energy used appears on your electric bill.

The terms and units related to work, energy, and power are summarized in
Table 8-1.

LR Important Terms Used in Energy

Quantity Definition Units
Force Mass X Acceleration Newtons
Work Force X Distance Joules
Energy Ability to do work Joules
Energy Power X Time Joules

Work  Energy

Power =
Time Time

Watts
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Physics in the Making ,
James Watt and the Horsepower

James Watt devised the horsepower, a unit of power with a colorful history, so
that he could sell his steam engines. Watt knew that the main use of his engines
was in mines, where owners traditionally used horses to drive the pumps that re-
moved water. The easiest way to promote his new engines was to tell the min-
ing engineers how many horses each engine would replace. Consequently, he did
a series of experiments to determine how much energy a horse could generate
over a given amount of time. He found that, on average, a healthy horse can do
550 ft-1b of work every second over an average working day. Watt called this unit
horsepower and rated his engines accordingly. We still use this unit (the engines
of most cars and trucks are rated in horsepower), although these days we sel-
dom build engines to replace horses. ®

9 TYPES OF ENERGY

Energy, the ability to do work, appears in many different kinds of physical sys-
tems, which give rise to many different kinds of energy. In this chapter we talk
about only two of these categories—Kkinetic energy, which is energy associated
with moving objects, and gravitational potential energy, which is a form of energy
waiting to be released. We wait until Chapter 12, after we have discussed phe-
nomena associated with heat, to talk about the many other categories of energy.

Kinetic Energy

Think about a cannonball flying through the air. When the iron ball
hits a wooden target, the ball exerts a large force on the fibers in the
wood, splintering them and pushing them apart, thereby creating a hole.
The cannonball in flight clearly has the ability to do work because it is
in motion. (If it were not in motion, it would remain on the ground and
do no work at all.) This energy of motion is called kinetic energy. You
can find countless examples of kinetic energy in the world around you.
A swimming fish, a flying bird, a speeding car, a soaring Frisbee, a falling
leaf, and a running child all have kinetic energy.

Our intuition tells us that two factors govern the amount of an ob-
ject’s kinetic energy. First, heavier objects have more energy than
lighter ones: a bowling ball traveling 10 meters per second (a very fast
sprint) carries a lot more kinetic energy than a ping-pong ball travel-
ing at the same speed. In fact, kinetic energy is proportional to mass:
double the mass and you double the kinetic energy (Figure 8-6a on
page 170).

Second, the faster something is moving, the greater the force it is
capable of exerting. A high-speed collision on the highway causes much
more damage than a fender-bender in a parking lot. It turns out that
an object’s kinetic energy increases as the square of its velocity. A car
moving 40 kilometers per hour has four times as much kinetic energy T
as one moving 20 km/h, while at 60 km/h a car carries nine times as Wi o cealleat s L o
much kinetic energy as at 20 km/h (Figure 8-6b on page 170). Thus, a modest  window it demonstrates the
increase in speed can cause a large increase in kinetic energy. existence of kinetic energy.




170 CHAPTER 8 Kinetic and Potential Energy

Y
v

i —
{ A e 3/
) m 2

Double the mass, Double the speed,

double the kinetic energy increase kinetic energy 4 times
Triple the mass, Triple the speed,

triple the kinetic energy increase kinetic energy 9 times

FIGURE 8-6. (a) Double the mass and you double the kinetic energy. (b) Double the
velocity and you increase kinetic energy by a factor of four.

These ideas, presented as equations, lead to the following definition.

1. In words:

Kinetic energy equals the mass of the moving object times the square of
that object’s velocity, multiplied by the constant é

2. In an equation with words:
Kinetic energy (in joules) = % X Mass (in kg) X [Velocity (in m/s)]?
3. In an equation with symbols:

1

KE =5 my?
We won’t discuss where the constant 5 comes from, but it must be included for
the formula to be correct. Some examples of kinetic energy are shown in Look-
ing at Energy, on p. 171.

Kinetic Energy Versus Momentum Although kinetic energy and momentum are
both properties of moving objects and although both depend on the mass and
the velocity of that object, they are quite different quantities. To make this point
clear, here are two important differences between them:

1. Momentum is a vector, while kinetic energy is a positive scalar. In a system
with two moving objects—two moving billiard balls, for example—the mo-
menta of the two objects can cancel each other either partially or completely
if they travel in opposite directions. The energies of the two objects, however,
always add to each other to give the total energy of the system.

2. Momentum grows linearly with velocity, but kinetic energy grows as the
square of velocity. Double the velocity of one of those billiard balls and the
momentum doubles, while the kinetic energy increases by a factor of four.
This difference is underscored by Example 8-5 at the end of the chapter in
which the bowling ball has a greater momentum, while the baseball carries
more kinetic energy.



Looking

Raindrops are wet, but they don’t hurt you when they fall on your head. That’s because one raindrop
has very little energy; it takes a lot of raindrops to hurt someone. Large hurricanes have such energy
that they can bring down buildings and wash people away; they are among the most energetic natu-
ral phenomena on Earth. Most of our experience falls between these extremes, but physicists study
interactions with far less and far more energy than is familiar to most people. For instance, the
impact of a large meteor (10-km in diameter) colliding with Earth, as probably happened 65 million
years ago, would have released enough energy to destroy most life on the planet at that time.

104 w1

Raindrop, 0.0001 joule
1077 J

0.01 joule

Riding in a car at 55 mph,
Impact of 10-km 600,000 joules

meteor striking Earth, 100 J

107 joules

Typical hurricane, 10" joules
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A balancing rock doesn’t do
any work as long as it stays
in place. If it starts to fall
over, however, you don't
want to get in its way.

Potential Energy

Almost every mountain range in the country has a balancing rock,
a boulder precariously perched on top of a hill so that it looks as
if a little push would send it tumbling down the slope. If the bal-
ancing rock were to fall, it would acquire kinetic energy, and it
would do work on anything it smashed into. This means that even
though the balancing rock does no work while it is motionless, it
still has the potential to do work. The boulder possesses energy
just by virtue of having the potential of falling.

Energy that could result in the exertion of a force over a dis-
tance but is not doing so now is called “potential energy.” In the
case of the balancing rock, it is called gravitational potential en-
ergy, because it is the force of gravity that would cause the rock
to move and exert its own force (its weight) on impact.

An object that has been lifted above the surface of the Earth
possesses an amount of gravitational potential energy exactly
equal to the total amount of work you would have to do to lift it
from the ground to its present position.

1. In words:

The gravitational potential energy of any object equals its weight (the force
of gravity exerted on the object) times its height above the ground.

2. In an equation with words:

Gravitational potential

3 . ; 5 : !
Energy (in joules) Mass (in kg) X g (in m/s?) X Height (in m)

where g is the acceleration due to gravity at the Earth’s surface (see Chap-
ter: 3)):
3. In an equation with symbols:

PE = mgh

In Example 8-1 we saw that if you lift a 12-kilogram suitcase 0.75 meters
into the air, you do 88.2 joules of work and the suitcase acquires 88.2 joules of
potential energy. This is the amount of work that would be done if the suitcase
were allowed to fall, and it is the amount of gravitational potential energy stored
in the elevated suitcase.

9 THE CONSERVATION OF ENERGY

Interchangeable Forms of Energy

One of the most useful attributes of energy is that all of its many forms are in-
terchangeable. Let’s examine this property for the two forms of energy we have
encountered so far—kinetic and gravitational potential energies.

A good way to understand this idea is to think about the roller coaster ride
we discussed in the Physics Around Us section at the start of this chapter. While
the car is being lifted to the top of the track for the start of the run, a force equal
to the acceleration due to gravity (g) times the mass (m) of the car (plus the
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PE + KE = mgh

FIGURE 8-7. A roller coaster
car has gravitational poten-
tial energy at the top of the
hill and kinetic energy at the
bottom of the hill. It has a

PE=0 mix of both kinds of energy
KE = mgh at points in between.
passengers) is being applied over a distance /4, where 4 is the height of the track. =4
Thus, the work W done on the car is (W v
W = mgh ‘

This value is also the potential energy that the car has when it is resting at the
top, ready to start down.

As the descent starts, two things happen: (1) the car starts to move and there-
fore acquires kinetic energy and (2) the car starts to lose height, so its potential
energy begins to drop. By the time the car has reached the bottom of the first
hill, it is at ground level, so its potential energy has been reduced to zero. At the
same time, it is moving as fast as it is going to move, so its kinetic energy is at
its maximum. On the way down, then, the potential energy has changed into
kinetic energy—in other words, one form of energy has turned into another
(Figure 8-7).

As the car starts up the second hill, this process goes on in reverse. As the
car climbs, its potential energy increases while its kinetic energy drops. At the
top of the second hill, when the car is momentarily stationary before its second
swoop, all the kinetic energy it had at the bottom of the first hill has been con-
verted back into potential energy. If we ignore losses due to friction (a subject
we take up in Chapter 12), this back and forth transfer of energy between these
two forms will go on forever.

We can summarize this result by saying that @
it
Kinetic and gravitational potential energy are interchangeable. "
This statement is actually a special case of a more general rule, a rule that states
that al// forms of energy are interchangeable.

T

The Principle of Energy Conservation

Physicists always look for constants in their efforts to describe a changing uni-
verse. Is the total number of atoms or electrons in the universe constant? Is the
total amount of electric charge fixed? We have seen in Chapter 6 that any state-
ment that says that a quantity in nature does not change—that it is conserved—
is called a conservation law. We have already seen how the conservation laws
relating to linear and angular momentum help us understand the behavior of
physical systems. If anything, the conservation law for energy is even more
important.



174 CHAPTER 8 Kinetic and Potential Energy

In terms of the forms of energy we have discussed so far, the law of conser-
vation of energy states that

In a closed system, neglecting any frictional forces, the total amount
of kinetic and gravitational potential energy is conserved.

This law tells us that although the kind of energy in a given system can change,
the total amount cannot. For example, when that roller coaster car starts down
the first hill, the total amount of energy it has at the beginning is still there
throughout the descent and the climbing of the next hill. Initially, all of this en-
ergy is gravitational potential energy. It changes along the way to kinetic energy,
but the total amount of these two forms of energy never changes.

If you ride in a roller coaster car, you're certainly aware of changing speed
as the car drops down or climbs up, but there’s no direct indication of how much
potential energy or kinetic energy you have along the way. There is no joule me-
ter you can use to measure the potential energy of a balancing rock or the ki-
netic energy of a falling one. The fact that you can’t see energy directly doesn’t
change the fact that it exists and can affect you.

The concept of energy allows us to look at the world so that we can analyze
it. In fact, it is probably the single most successful tool ever devised for explain-
ing how nature works and predicting its future behavior. Physicists often try to
look at situations in several ways, each way giving a different understanding of
what is actually happening. You can look at a roller coaster car in terms of force
and acceleration, in terms of impulse and changes in momentum, or in terms of
potential and kinetic energy. However, if you want to calculate the car’s speed
at the bottom of the hill, conservation of energy is by far the most useful way to
analyze the problem. This situation often proves to be the case, which is why we
spend several chapters exploring how we can use the idea of energy to under-
stand various natural processes. The most important thing about conservation of
energy is that it has been used by physicists for over 200 years and has never
failed to work. Clearly, then, conservation of energy embodies a fundamental
truth about the physical world, as valid as any concept known to humanity.

Energy of a Falling Body

The fact that the sum of kinetic and potential energies must be conserved gives
us an easy way to analyze the fall of an object from a height. At the beginning
of the fall, just before the object is released, its energy is all potential. If it is at
a height i above the ground, then we saw earlier that its energy is mgh joules.
As the object falls, this potential energy is gradually converted to kinetic energy,
until, just before it hits the ground, the conversion is complete. The energy is now
all kinetic and is given by the expression 5 mv2 From this fact, we can deduce
some important facts about falling bodies.

1. In words:

The kinetic energy at the end of a fall is equal to the potential energy at the
beginning.

2. In an equation with words:

Initial potential energy = Final kinetic energy
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3. In an equation with symbols:
mgh = %mv2
If we cancel the mass from both sides of the equation, we find
or v="V2gh

In other words, the speed of the object at the end of the fall is independent of
the object’s mass.

gh=%v2

7,
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Develop Your Intuition:
How To View an Object Falling
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Many thinkers, including brilliant scientists such as Aristotle, thought
that heavier objects should fall faster than light ones and should therefore
have a higher velocity at the end of the fall. How would you explain our pre-
ceding result to someone who argues that the heavier object has more oomph
at the end, and therefore has to be moving faster?

It is true that the heavier object has more kinetic energy when it reaches
the end of the fall and therefore makes a bigger impact. It is also true, how-
ever, that the heavier object had more potential energy at the beginning of
the fall because a greater force had to be applied to lift it a distance /4. The
lighter object had less potential energy at the start and has less kinetic energy
at the end. The effects of mass simply cancel out, and both fall at the same
speed.

% THE WORK-ENERGY THEOREM

Let’s think again about the example of the roller coaster in the Physics Around
Us section. We have answered a lot of questions about how it works but one
question remains: how did it acquire that potential energy in the first place? We
know that when the roller coaster car was lifted up, a force was exerted over a
distance to overcome the downward pull of gravity. In the language of physics,
work was done. In Chapter 12 we see that work is actually the result of the ex-
penditure of different sorts of energy. In the case of the roller coaster it was elec-
trical energy driving a motor, while in the case of a barbell being lifted it was
energy in the muscles of the weight lifter. In this context, the lifting of the car or
a weight is just one more example of energy being changed from one form to
another. If we confine our attention to kinetic and gravitational potential energy,
however, as we have done so far, then we can make one more statement about
work and energy:

The total potential and kinetic energy of an object in a given state
is equal to the work that was done to bring the object to that state.

This statement is known as the work-energy theorem.
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In practical situations, it often turns out that what you need to look at are
the changes in kinetic and potential energy. The work-energy theorem applied
to changes in energy gives this statement:

The work done on an object is equal to the sum of the changes in

LOOKING DEEPER

Collisions

Collisions between objects are an extremely important
and constantly recurring theme in physics. Much of
what we know about the nucleus of the atom (Chapter
26) and about elementary particles (Chapter 27) comes
from studies of particle collisions at the subatomic level.
The concepts of conservation of momentum and con-
servation of energy provide a useful way of analyzing
any collision process.

Consider two objects of mass m; and m;, moving
initially with velocities v; and v,. Suppose they collide
and we want to know what happens. To do this, we call
the final velocities u; and u,; our task is to determine
these velocities (Figure 8-8a). Conservation of momen-
tum tells us that:

Initial momentum = Final momentum
mivy — mpvy = —nyuy + noly

while conservation of energy tells us that if there are
no gains or losses of energy in the collision:

Initial energy = Final energy

%m.vlz + %mzvzz = %mlulz + %mzuzz

Here we have two equations and two unknown
quantities to find: «; and u,. The rules of algebra tell us
that we can always find solutions to this kind of prob-
lem. If we know the initial velocities of the two objects,
be they billiard balls or subatomic particles, we can al-
ways find the final state of the system. This is a good
example of the way in which the Newtonian clockwork
universe operates (see Chapter 5).

Let’s take a simple case, in which the objects are
equal in mass (call it m) and are approaching each other
with equal (but oppositely directed) velocities of mag-
nitude v. In this case, conservation of momentum tells
us that

m(v—=v)=0=m (u + up)

so that Uy = Uy

kinetic and potential energy.

Mass: my my
Momentum: my v UL
1 1
Energy: 5 mv»? 5 MpV?

\'/m

(b) -~
up == Up
e e 2 ) ——
Mass: my my
Momentum: —myu; MmyUy

Energy: % myu;?

% My Up?
FiIGURE 8-8. (a) A collision between two billiard balls
is an example in which both momentum and energy
are conserved. (b) If the two balls approach each
other with the same speed before the collision, they
rebound from each other with the same speed after
the collision.

In other words, however fast the objects are moving af-
ter the collision, their velocities must be equal and op-
posite. Call the magnitude of the final velocity «. Then
the energy equation tells us that if no energy is gained
or lost in the collision,

1

1
e 2 = 2 2
, my oz , mv

1 1
B 1L
) mu- + 2 mu

from which it follows that
U =

In this collision, then, the two objects approach each
other with the same speed, collide, and then move away
from each other with the same speed that they had on
approach (Figure 8-8b). If you think of two billiard balls
colliding, you can see that this result is reasonable.
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M4
‘@": Develop Your Intuition:

W ¢ Adding Energy to the System
Y Consider a collision between billiard balls of equal mass that are trav-
eling toward each other at equal speed v. At the moment of impact, an ex-
plosive cap on one ball explodes at the point of impact. How would the two
equations in our analysis of collisions have to change for this situation?

All the forces associated with the cap are internal to the system, so they
cannot affect the momentum of the system, which for our example remains
zero. However, the cap does add energy to the system so that the energy equa-

tion now reads
Initial energy = Final energy

e ) =

Sy Esimy s C == et = mu

where C is the amount of energy added to the system by the explosive cap.

In this case, the final velocity, u, is higher than it would be without the cap, b
but the two balls still move away from each other at the same speed, back to

back, so the final momentum is still zero.

THINKING MoRrRE ABOUT

Simple Machines support (called the “fulcrum”), as we described in
Chapter 7. Used properly, this simple device can

increase an applied force. In a baseball swing,
the batter’s pivoting body serves as the fulcrum,
while the extended arms act as the lever arm (Fig-
ure 8-9). Everyday examples of levers include a

he conversion back and forth from potential

energy to kinetic energy is one of the most
critical tasks of a technological society. To accom-
plish such energy conversions, humans have in-
vented an extraordinary variety of machines, which
are devices that change the direction or magnitude
(or both) of an applied force. (This definition ac-
tually includes virtually all of the common tools,
as well as more elaborate mechanical devices.) In
the process, machines help us to apply a force over
a distance—that is, to do work. In other words, ma-
chines help us convert between potential energy
and kinetic energy in a wide variety of clever and
useful ways. Three simple devices—the lever, the
inclined plane, and the wheel and axle—lie at the
heart of many familiar machines.

The lever Next time you watch a baseball game,
notice how a power hitter can blast a baseball with
one swing of the bat. The hitter achieves towering
home runs by using a baseball bat—a beautiful ex- FiGURE 8-9. A view of a baseball hitter shows the

ample of the lever. A lever is simply a bar with a lever effect of the pivoting body and extended arms.
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claw hammer or crowbar, which can pry out a
firmly lodged nail. The same principle comes into
play when you use a tennis racquet or a sledge-
hammer, which can increase the applied force on
a struck object. Staplers, nutcrackers, fishing poles,
and bottle openers are just a few other examples
of levers in our daily lives.

The inclined plane Have you ever driven over a
high mountain pass? You probably noticed how
the road winds back and forth in sharp switch-
backs. A switchback road is a simple machine
called an inclined plane, which exchanges an
increased travel distance for less effort (less
power). Variations on the inclined plane include
ramps and screws. The exact same principle also
occurs in the wedge, which is used to cut and split

A mountain road with switchbacks is an example of
an inclined plane. The car travels a longer distance
but needs less power to climb the hill.

Summary

Energy, which is measured in joules, is the ability to do
work—the ability to exert a force over a distance. Power,
which is measured in watts or kilowatts, is the rate at which
energy is expended, that is, energy output per unit time.
Energy comes in several varieties. Kinetic energy is the
energy associated with moving objects such as cars or can-
nonballs. Gravitational potential energy, on the other hand,
is stored energy, ready for use; for example, the gravitational
energy of dammed-up water. Energy can shift from one form
to another, so that kinetic energy and gravitational poten-

objects. Everyday examples of wedges include
knives, scissors, axes, and your front teeth.

The wheel and axle The wheel and axle was one
of the transforming technological inventions of
human history. So common are wheels in our lives,
that it’s hard to imagine a society without this sim-
ple machine. The most obvious wheels in our lives
are associated with vehicles—cars, bicycles, trains,
and roller blades—in which wheels greatly reduce
the friction of one object moving against another.
But wheels appear in thousands of other devices,
including clocks, fans, computer discs, ball bear-
ings, gear trains, conveyor belts, and much more.
In many of its everyday uses, including the steer-
ing wheel of your car, the capstan of a ship, pen-
cil sharpeners, and valves, the wheel and axle may
be thought of as a modification of a lever, in which
the central axle acts like a fulcrum. To convince
yourself of this idea, imagine common variants of
water faucets, which can vary from simple levers
to T-shaped handles or wheel-like valves.

Remarkably, many of the complex mechani-
cal devices in our daily lives—cars, elevators, vend-
ing machines, and much more—are merely clever
combinations of these three simple machines. Can
you identify some of these simple machines in the
devices you see around you? Some authorities
classify the pulley, the wedge, and the screw as sep-
arate simple machines; try to see if you can rec-
ognize these elements as well. What do you think
these simple machines all have in common?

tial energy are interchangeable. However, according to the
law of conservation of energy, in a closed system, neglect-
ing any frictional forces, the total amount of kinetic and
gravitational potential energy is conserved.

The work needed to bring a system to a given state is
equal to the sum of the kinetic and potential energies of the
system. This statement, known as the work-energy theorem,
relates the work done on a system to the total energy of that
system.
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Key Terms

energy The ability to do work. (p. 166)

gravitational potential energy The energy a body has by
virtue of its position in a gravitational field. (p. 169)

joule The SI unit of work, corresponding to a force of 1 newton
acting through 1 meter. (p. 167)

kilowatt The unit of 1000 watts (corresponding to an
expenditure of 1000 joules per second). (p. 167)

kinetic energy The energy a body has by virtue of its motion.
(p- 169)

law of conservation of energy The law that states that in a
closed system the total amount of all forms of energy
remains the same. (p. 174)

Review

1. What is the scientific definition of work? How does it dif-
fer from ordinary English use?

2. What is the definition of the joule? Why did scientists in-
troduce this unit?

3. What is the difference between energy and power?

4. Is the kilowatt-hour a unit of energy or of power? How
about kilowatt?

5. What is the difference between the watt and the horse-
power?

6. What is the difference between the joule and the kilowatt-
hour? Who uses which unit?

7. What is the definition of the wart? What is the relationship
between the watt and the joule?

8. List some different kinds of energy. Explain how they dif-
fer from each other.

9. What factors determine the kinetic energy of a moving
object?

Questions

1. A 50-pound crate is pushed across
the floor by a 20-pound horizontal LO b
force. Aside from the push-
ing force and gravity,
there is also a 50-pound 20 b W
force exerted upward on

the crate and a 10-pound
ISO Ib

10 Ib

frictional force, as shown

in the figure. Which of these forces
does no work? Which does positive
work? Which does negative work?

Questions 179

power The amount of work done divided by the time it takes
to do it, or the energy expended divided by the time it
takes to expend it. (p. 166)

watt The SI unit of power, defined as the expenditure of 1 joule
of energy in 1 second. (p. 167)

work The product of the force exerted on an object times the
distance over which it is exerted. (p. 163)

work-energy theorem The statement that the total potential
and kinetic energy of an object in a given state is equal to
the work that was done to bring the object to that state.

(p- 175)

10. Find something in your classroom or dorm room that pos-
sesses gravitational potential energy.

11. Look around your home and school. What objects in
your everyday experience have the greatest potential
energy?

12. What does it mean to say that different forms of energy
are interchangeable?

13. What does it mean to say that energy is conserved?

14. What is the work-energy theorem? How does this theorem
relate to the example of the roller coaster?

15. Give an example of the work-energy theorem in your
home. Give another example at school.

16. What are the three simple machines? Give examples of
each.

17. Identify some parts of an automobile and describe how
they are used as simple machines.

2. Two construction cranes are each able to lift a maximum
load of 20,000 N to a height of 100 meters. However, one
crane can lift that load in ; the time it takes the other. How
much more power does the faster crane have?

3. As a freely falling object picks up downward speed, what
happens to the power supplied by the gravitational force?
Does it increase, decrease, or stay the same?

4. A pendulum swings left to right in the figure. At what lo-
cations in the pendulum’s swing is the gravitational force
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doing positive work? Negative work? No work? What is
happening to the speed of the pendulum in each case?

-
-
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. Where in the roller coaster ride shown in the figure is the
gravitational force doing positive work? Negative work?
No work? What is happening to the speed of the car in
each case?

. What kinds of energy are present in the following systems?

a. Water behind a dam

b. A swinging pendulum

c. An apple on an apple tree
d. The space shuttle in orbit

. How do gravitational potential energy and kinetic energy
shift in the following events?

a. A baseball player hits a pop fly.

b. A bungee jumper leaps off a high bridge.
¢. A meteor streaks down from space.

d. An apple falls from a tree.

. Identify which of the simple machines (the lever, the in-
clined plane, and the wheel and axle) are present in the
following devices. (Note: Some devices incorporate more
than one.)

a. A toothbrush

A fork

A pizza cutter with a circular disk
A saw

A chisel

A pencil sharpener

8o o

- @

. Which (if either) of the two objects shown has the great-
est kinetic energy? Does it matter in which direction the
objects are moving?

A B

a V

m %m
2v

10.

14

12.

135

14.

15.

16.

17

18.

19.

Where in the figure for Problem 4 does the pendulum have
the greatest gravitational potential energy? Where does it
have the greatest kinetic energy?

Where in the figure for Problem 5 does the roller coaster
car have the greatest gravitational potential energy? Where
does it have the greatest kinetic energy?

In the absence of air resistance, a falling rock gains ki-
netic energy and loses potential energy, with the total en-
ergy of the rock remaining constant. In the presence of
air resistance, however, the rock eventually reaches ter-
minal velocity. Now the kinetic energy is constant, but the
potential energy continues to decrease as the rock falls
toward the ground. What has happened to this missing
energy?

According to the work-energy theorem, if work is done
on an object, its potential and/or kinetic energy changes.
Consider a car that accelerates from rest on a flat road.
What force did the work that increased the car’s kinetic
energy?

Consider the block and
tackle arrangement used to
lift a 100-pound engine.
What simple machine(s) is
used in this arrangement?
What force is necessary to
hold up the engine? (Hint:
How many ropes are actu-
ally supporting the weight?)

A 500-N crate needs to be
lifted 1 meter vertically in
order to get it into the back
of a pickup truck. One op-
tion is to lift it directly up
into the truck. Another option is to slide it up a friction-
less inclined plane. Which method (if either) gives the crate
more gravitational potential energy? What is the advan-
tage of using the inclined plane?

List the several conservation laws that we have described
thus far. In what ways are these laws similar?

Does the International Space Station have gravitational
potential energy? Explain.

Is the total amount of gravitational and kinetic energy con-
served in an open system? Why?

Many everyday devices incorporate more than one of the
three simple machines—the lever, the inclined plane, and
the wheel and axle. Identify the simple machine compo-
nents in:

a. A crowbar

b. A pair of scissors
c. A stapler

d. A corkscrew
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Problem-Solving Examples

Paying the Piper

A typical CD system uses 250 watts of electric power.
If you play your system for three hours in an evening,
how much energy do you use? If energy costs 8 cents
a kilowatt-hour, how much do you owe the electric
company?

REASONING AND SOLUTION: The given information consists
of power and time, and you are asked to find an amount
of energy. You can solve this problem by remembering the
equation that relates energy used to amount of power:

Problem-Solving Examples 181

Energy = Power X Time
= 250 watts X 3 hours
= 750 watt-hours
Since 750 watts equals 0.75 kilowatt,
Energy = 0.75 kilowatt-hour

The cost is

8 cents per kilowatt-hour X 0.75 kilowatt-hour = 6 cents. ®

(8-4)

e

Power Lifting

In Example 8-2 we talked about an athlete lifting a 400-
pound weight. Suppose that, grunting and groaning, he lifts
the barbell in 3 seconds. How much power is he expend-
ing in both English and SI units?

REASONING AND SOLUTION: Power is the work done di-
vided by the time it takes to do it. Therefore, in the En-
glish system of units:

W (in foot-pounds)

ARl t (in seconds)

1200 ft-1b
3s
= 400 ft-1b/s

But 1 horsepower is 550 ft-Ib/s, so:
400 ft-1b/s

550 ft-1b/s/hp

_ 400
"~ 550

=0.727 hp

P (in hp) =

In other words, for this very short period, the trained
athlete is developing as much power as a small hand
drill. In general, human beings can produce about L hp
over extended periods of time—a good deal less than a
horse.

There are two ways to calculate the answer in ST units.
One is to go to the table in Appendix A and find that one
horsepower is equal to 745.7 watts. In this case

Power (in watts) = 0.727 hp X 745.7 watts/hp
= 542.1 watts

The other way is to note from Example 8-2 that the ath-
lete does 1627 joules of work in 3 seconds, so:

1627 joules

Power (in watts) = 3 d
seconds

= 542.3 watts

The answers differ slightly due to rounding, but basically,
they agree. ®

EXAMPLE

8-5

-

Bowling Ball Versus Baseball

What is the kinetic energy of a 4-kilogram (about 9-pound)
bowling ball traveling down a bowling lane at 10 meters
per second (22 miles per hour)? Compare this energy to
that of a 250-gram (half-pound) baseball traveling 50 me-
ters per second (110 miles per hour). Which object would
hurt more if it hit you (that is, which object has the greater
kinetic energy)?

REASONING AND SOLUTION: In this situation, the bowling
ball has more mass but the baseball has more speed. The
only way to really compare their energies is to substitute
numbers into the equation for kinetic energy. For the
4-kg bowling ball traveling at 10 m/s,

E
(in ?g;%gs) =5 X Mass (in kg) X [Velocity (in m/s)]?

I
o
% X 4 kg X (10 m/s)?
=3 X 4 kg X 100 m¥/s?
=200 kg-m?/s?

= 200 joules

For the 250-gram baseball traveling at 50 meters per
second,

Energy

= ; e 2
(in joulss) X Mass (in kg) X [Velocity (in m/s)]

1
2
3 X 250 g X (50 m/s)?
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A gram is one-thousandth of a kilogram, so 250 g = 0.25 kg:

Energy = 5 X 0.25 kg X 2500 m%/s?
= 312.5 kg-m?/s?
= 312.5 joules

These results are summarized in Table 8-2. Even though
the bowling ball is much more massive and has more mo-
mentum (mass X velocity) than a baseball, a hard-hit base-
ball carries more kinetic energy than a typical bowling ball

because of its high velocity. ®

1/:\:10-%: 33 Comparison of Kinetic
Energy and Momentum

Mass Velocity Energy Momentum *
(kg)  (m/s) (8 (kg-m/s)
Bowling 4 10 200 40
ball

Baseball 0.25 50 31125 12:5

Gravitational Potential Energy

(mgh)bowling ball = (mgh)baseball

EXAMPLE
g'g 1. YE‘T 15 t}tl)e lg.rav1tt)aﬁolnal potential energy of? a Canceling g on both sides and inserting the known
-kilogram bowling ball 1 meter above the ground? height of the bowling ball and the known masses of the
2. How high would a 250-gram baseball have to be held two balls gives:
above the ground to have the same potential energy?
4 kg X 1 m = 0.25 kg X hpasepall
REASONING AND SOLUTION:
1. Apply the equation for potential energy to the 4-kg Therefore,
bowling ball 1 meter above the ground: 4kgx1m
hbaseball Y
PE = mgh 0.25 kg
=4kgxX98m/s> X 1m =16 m
= 39.2 kg-m?/s?
—399 'ogugs v The baseball would have to be held 16 meters (more
= than 50 feet) above the ground to hold the same
2. The second question asks for the height of a baseball amount of gravitational potential energy as the bowl-
in the case that: ing ball. ®
Problems
1. How much work against gravity do you do when you climb 6. Zak, helping his mother rearrange the furniture in their liv-

a flight of stairs 3 meters high? Compare this work to the
energy consumed by a 60-watt lightbulb in an hour. How
many flights of stairs would you have to climb to equal the
work of the lightbulb?

. Would you rather be hit by a 1-kilogram mass traveling

10 meters per second, or a 2-kilogram mass traveling 5 me-
ters per second?

. Compared to a car moving at 10 miles per hour, how much

kinetic energy does that same car have when it moves at
20 miles per hour? At 30 miles per hour? At 60 miles per
hour? What do these numbers suggest to you about the dif-
ficulty of stopping a car as its speed increases?

. A small air compressor operates on a 1.5-horsepower elec-

tric motor for 8 hours a day. How much energy is con-
sumed by the motor daily? If electricity costs 10 cents a
kilowatt-hour, how much does it cost to run the compres-
sor each day? (Note: 1 horsepower equals about 750
watts.)

. The joule and the kilowatt-hour are both units of energy.

How many joules are equal to 1 kilowatt-hour?

10.

ing room, moves a 50-kg sofa 6 meters with a constant force
of 20 newtons. Neglecting friction,

a. What is the work done by Zak on the sofa?
b. What is the average acceleration of the sofa?

Georgie was pulling her brother (20 kg) in a 10-kg sled with
a constant force of 25 newtons for one block (100 meters).

a. What is the work done by Georgie?
b. How long would a 100-watt lightbulb have to glow to pro-
duce the same amount of energy expended by Georgie?

. A woman weight lifter can lift a 150-Ib weight from the

floor to a stand 3.5 feet off the ground. What is the total
work done by the woman in ft-1b and joules?

The stair stepper is a novel exercise machine that attempts to
reproduce the work done against gravity by walking up stairs.
With each step, Brad (60 kg) simulates stepping up a distance
of 0.2 meters with this machine. If Brad exercises for 15 min-
utes a day with a stair stepper at a frequency of 60 steps per
minute, what is the total work done by Brad each day?

Calculate the amount of energy produced in joules by a
100-watt lightbulb lit for 2.5 hours.
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12.

13.

14.

15.

16.

Normally the rate at which you expend energy during a brisk
walk is 3.5 calories per minute. (A calorie is the common unit
of food energy, equal to 0.239 joules.) How long (in minutes)
do you have to walk in order to produce the same amount
of energy as in a candy bar (approximately 280 calories)?
How long (in minutes) do you have to walk to produce the
same amount of energy as a 100-watt lightbulb that is lit
for 1 hour? Refer to Problem 11.

You throw a softball (250 g) straight up into the air. It

reaches a maximum altitude of 15 meters and then returns

to you. (Assume the ball departed from and returned to
ground level.)

a. What is the gravitational potential energy (in joules) of
the softball at its highest position?

b. What is the kinetic energy of the softball as soon as it
leaves your hand? (Assume that there are no energy
losses by the softball while it is in the air.)

c. What is the kinetic energy of the softball when it re-
turns to your hand?

d. From the kinetic energy, calculate the velocity of the ball.

Sleeping normally consumes 1.3 calories of energy per

minute for a typical 150-1b person. How many calories are

expended during a good night’s sleep of 8 hours?

You leave your 75-watt portable color TV on for 6 hours
during the day and evening, and you do not pay attention
to the cost of this electricity. If the dorm (or your parents)
charged you for your electricity use and the cost was $0.10
per kW-hr, what would be your monthly (30-day) bill?

While skiing in Jackson, Wyoming, your friend Ben (65 kg)
started his descent down the bunny run, 25 meters above

Investigations

17.

18.

19.

1.

Look at your most recent electric bill and find the cost of
1 kilowatt-hour in your area.

a. Look at the back of your CD player or another appli-
ance and find the power rating in watts. How much does
it cost for you to operate the device for 1 hour?
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the bottom of the run. If he started at rest and converted

all of his gravitational potential energy into kinetic energy,

a. Whatis Ben’s kinetic energy at the bottom of the bunny
run?

b. What is his final velocity?

c. Is this speed reasonable?

Lora (50 kg) is an expert skier. If she starts at 3 m/s at the

top of the lynx run, which is 85 meters above the bottom,

what is her final speed if she converts all her gravitational

potential energy into kinetic energy? What is her final ki-

netic energy at the bottom of the ski run?

The Moon has a mass of 7.4 X 10??> kg and completes an

orbit of radius 3.8 X 10% m about every 28 days. The Earth

has a mass of 6 X 10%* kg and completes an orbit of radius

1.5 X 10'! m every year.

a. What is the speed of the Moon in its orbit? The speed
of the Earth?

b. What is the kinetic energy of the Moon in orbit? The
kinetic energy of the Earth?

The current theory of the structure of the Earth, called

plate tectonics, tells us that the continents are in constant

motion. Right now, for example, the North American con-

tinent is moving at the rate of about 2 cm/year. Assume

that the continent can be represented by a slab of rock

5000 km on a side and 30 km deep and that the rock has

an average mass of 2800 kg/m?.

a. What is the mass of the continent?

b. What is the kinetic energy of the continent?

c. Compare this to the kinetic energy of a jogger of mass
70 kg running at a speed of 5 m/s.

b. If you leave a 100-watt lightbulb on all the time, how
much will you pay in a year of electric bills?

c. If you had to pay $10.00 for a high-efficiency bulb that
provided the same light as the 100-watt bulb with only
10 watts of power, how much would you save per year
if you used the bulb for 4 hours each day?

See the Physics Matters home page at www.wiley.com/college/trefil for valuable web links.

1.
2"

www.vast.org/vip/book/HOME.HTM The physics of roller coasters online.

www.physicsclassroom.com/Class/energy/energtoc.html Two useful animated lessons on work, energy, and power from
physicsclassroom.com (includes discussions of physics of skiing and roller coasters).

energy content of food.

chanical advantage, work, and power.

. www.nu.ac.za/physics/1M2002/Energy%20work%20and%20power.htm A site from the University of Natal discussing

. www.bodybuilding.com/fun/becker2.htm Presents the physics underlying weight lifting, including gravity, friction, me-



