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K E Y  I D E A

Gravity is a universal
attractive force that acts
between any two masses.
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0  ne of life's most familiar phenomena is grav-
ity. If you drop a book, it falls. If you slip on
the ice, you fall. Acorns fall from trees and

rain falls from the sky. But have you ever looked up
at the full moon on a clear night and wondered why
it didn't fall? Almost 350 years ago the young Isaac
Newton did just that.

According to Isaac Newton, it happened this way:
he was walking in an apple orchard one fall day when
he noticed an apple falling from a tree. From the first
law of motion he knew that the change in the state of
motion of the apple (from stationary to falling) had
to have occurred because of the action of a force—a
force known as gravity.

At the same time as he saw the apple fall, he no-
ticed the Moon in the sky behind the tree. He knew
that the Moon went around the Earth in a roughly
circular orbit and if the laws of motion applied to the
Moon, then the action o f  a force—some kind o f
force—was required to keep the Moon from flying off
into space in a straight line. In a sense, Newton saw
that the Moon is falling, just like the apple, but is also
moving forward at the same time.

At this point, Newton asked a simple but very pro-
found question: was it possible that the same force that
caused the apple to fall also kept the Moon in its or-
bit? From this question came our modern under-
standing of the working of the solar system.

96
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T H E  U N I V E R S A L  FORCE O F  G R AV I T Y
Newton's three laws of motion don't say anything about the nature of the forces
that act in the universe. Discovering the nature of those forces is a separate prob-
lem from understanding their effects. Much of the progress of science during and
after Newton's time has been associated with the discovery and description of
the forces that act in the world around us. Newton's second great contribution
to science was to elucidate the nature of one of these forces.

Gravity is an attractive force that acts between any two objects in the uni-
verse. It is the most familiar (and insistent) force in our daily lives. It holds you
down in your chair and keeps you from floating off into space. It guarantees that
when we drop a ball or a book or a glass, they fall. The ancients knew the effects
of what we call gravity, and Galileo and many of his contemporaries studied its
quantitative properties. We discuss some of that work in connection with falling
bodies in Chapter 3. It was Isaac Newton, however, who revealed the true uni-
versal nature of gravity.

Everyone knew that gravity pulled objects toward the Earth, but until New-
ton, most people assumed that gravity was local and operated only near the
planet's surface. People believed that farther out, in the realm of the stars and
planets, different rules applied to the turning of the celestial spheres. They would
say that terrestrial gravity operated on the Earth and celestial gravity op-
erated in the heavens, but that the two forces had little to do
with each other. In their minds, there was no connection
between a planet in orbit around the Sun and an ap-
ple falling toward the ground. Isaac Newton dis-
covered that these two seemingly different kinds
of gravity were, in fact, one and the same. In
modern language, in a remarkable union of
seemingly disparate elements, he unified
earthly and heavenly gravity. This was an-
other important step in simplifying our
understanding of  the universe; we can
now explain a wide range of observations
by applying one law instead of two.

Let's look at this problem in more
detail (Figure 5-1). As we point out in
Physics Around Us, the fact that the Moon
moves more or less in a circle implies that
some sort of force must be acting on it to
keep it in orbit. The question that Newton
asked had to do with the exact nature of that
force. He knew that there was one force

/
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in the orchard—the force that caused the apple to • •  S p a c e
accelerate as it fell to Earth. Newton's insight was that
the force holding the Moon in its orbit could be the same
as the force that made the apple fall—the familiar force of grav-
ity. This force not only pulls the apple down, but it also extends out to the orbit
of the Moon and keeps it from flying off in a straight line.

Eventually, Newton realized that the orbits of all the planets could be un-
derstood if gravity is not restricted to the surface of the Earth but is a force found
throughout the universe. He formulated this insight (an insight that has been
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FIGURE 5 - 1 .  A n  apple
falling, a ball being thrown,
the space shuttle orbiting
the Earth, and the orbiting
Moon all display the influ-
ence of the force of gravity.
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overwhelmingly confirmed by observations) in what is called Newton's law of
universal gravitation.

1. In words:

tl

m1 m 2

FIGURE 5-2.  Two masses
separated by a distance. The
force of gravity falls off rap-
idly as the objects get far-
ther apart.

Between any two objects in the universe there is an attractive force (grav-
ity) that is proportional to the masses of the objects and inversely propor-
tional to the square of the distance between them.

2. In an equation with words:

Force of gravity = Constant X The square of the Distance between the masses

3. In an equation with symbols:

First mass X Second mass

X m2F = G x d2
where G is a number known as the gravitational constant (see next section).

This law tells us that the more massive two objects are, the greater the grav-
itational force between them. If one of the masses doubles, then the force of grav-
ity doubles. However, the greater the distance between them, the smaller the
force is. The equation is illustrated in Figure 5-2.

The law of universal gravitation is the first example we have encountered of
the inverse square relationship we discuss in Chapter 2. This means that if we
double the distance between the two objects, the force of gravity between them
becomes smaller by a factor of four. Triple that distance and the force drops by
a factor of nine. Thus, distant objects have to be very massive to exert apprecia-
ble gravitational forces. This fact explains why we never consider the gravita-
tional effects of distant stars when we talk about the orbits of planets in our solar
system.

441to.b
•  •

r, ;  4 Suppose that the distance between the Earth and the Sun suddenly
4"' doubled. How much would the mass of the Sun have to increase in

order to keep the force of gravity between the two the same?
The force of gravity depends inversely on the square of the distance be-

tween objects, so doubling the distance would cause a decrease in the force
of gravity by a factor of four. The force of gravity depends directly on the mass
of each object, so the mass of the Sun would have to be four times as big as
it is now to compensate for the larger distance.

Develop Your Intu i t ion:  Mov ing  t h e  Sun

The Gravitational Constant
The equation for gravitational force incorporates the gravitational constant—the
number, G, which is a constant of proportionality (see Chapter 2). In the equa-
tion for gravity, G expresses the exact numerical relation between the masses of
two objects and the distance between them, on the one hand, and the gravita-
tional force between them on the other. Henry Cavendish, a physicist at Oxford
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Suspended ball
moves

ball

Fixed lead sphere F I G U R E  5-3.  The Cavendish balance
---LD m e a s u r e s  the gravitational constant

G by balancing the gravitational
force against the force exerted by a
twisted wire.

University in England, first measured G in 1798 by using the apparatus shown
in Figure 5-3. Cavendish suspended from a wire a dumbbell made of two small
balls. Then he brought two large lead spheres near the balls. The resulting grav-
itational attraction between the small balls and the lead spheres turned the
dumbbell until the twisted wire exerted a counterbalancing force strong enough
to stop the rotation. By measuring the amount of twisting force (also known as
a torque) on the wire, Cavendish measured the force on the dumbbells. This mea-
sured force, together with the known masses of the dumbbells, the masses of the
heavy spheres, and knowledge of the distance between them, gave him the nu-
merical value of everything in Newton's law of universal gravitation except G,
which he then calculated using simple arithmetic. In metric units, the value of
G is 6.674 x 10-11 m3/s2-kg. Most physicists think that this constant is universal,
having the same value everywhere and at all times in our universe.

Ongoing Process of  Science
The Value of  G
It might surprise you to learn that the measurement of G is still of great inter-
est to scientists around the world. It turns out that most fundamental physical
constants, such as the mass of an electron or the electrical force between two
charged particles, are known with great precision and accuracy, to many decimal
places. But G is still only known, at best, to the fourth decimal place.

In November 1998 a group of 45 physicists met in London to celebrate the
200th anniversary of Cavendish's original experiment and to compare notes on
several new determinations of the constant. Al l  of these workers performed
meticulous experiments: they enclosed their apparatus in a vacuum, they elimi-
nated all stray magnetic and electrical fields, they checked and rechecked every
aspect of their work.

Rival groups in France, Russia, and the United States used modern versions
of the original Cavendish experiment, with weights suspended on a long wire or
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metal strips. They looked for subtle twisting effects and made their measurements
over and over again.

A Zurich group weighed a kilogram mass on an exquisitely precise scale, in
one case with a large mass below the scale, in the other case with the mass above
the scale. The tiny difference in the two weights gave a measure of G. An Amer-
ican group tried a similar approach: they measured the time of fall for objects,
with heavy weights held first below and then above the falling object. The tiny
difference in falling time could be used to calculate G.

All of these techniques yield similar values; for the record, the best estimate
for G is now about 6.674 X 10-11 m3/s2-kg. •

Weight and Mass
Recall that the law of universal gravity says that there is a force between any
two objects in the universe. Between you and the Earth, for example, there ex-
ists a force proportional to your mass and the (much larger) mass of the Earth.
The distance between you and the center of the Earth is the radius of the
Earth. This distance, which we denote by RE, is about 6400 km (4000 miles); this
is the number you would put in for the distance if you were calculating the force
with which you are attracted to the Earth.

The gravitational attraction between you and the Earth would accelerate you
downward if you weren't standing on the ground. As it is, the ground exerts an
equal and opposite force to cancel gravity, a force you can feel in the soles of
your feet.

An ordinary bathroom scale makes use of this interplay of forces. Inside the
scale is a spring or some other mechanism that, when compressed, exerts an up-
ward force. This upward force exerted by the scale keeps you from falling. The
size of this counterbalancing force registers on a display, allowing you to mea-
sure your weight.

Weight, in fact, is just the force of gravity on an object. Your weight de-
pends on where you are: on the surface of the Earth you have one weight, on
the surface of the Moon another, and in the depths of interstellar space you
would weigh next to nothing. Your weight is related to your mass, which is the
amount of matter in your body (see Chapter 4). However, weight is different
from mass. In interstellar space your weight would be zero, but your mass would
not change.

Develop Your Intu i t ion:
0, 4• 4  We i g h t  on  a  Mounta in top

Do you weigh the same at sea level as you do on a mountaintop?
The law of universal gravitation says that the farther apart two objects

are, the smaller is the gravitational attraction between them. On the moun-
taintop, you are farther from the center of the Earth than you are at sea
level, so you would actually weigh slightly less at a higher altitude. (In Prob-
lem 5 you get a chance to work out exactly what your weight reduction
would be.)
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Lod T h e  Acceleration due to Gravity: g
If we denote the mass and radius of the Earth as ME and RE, and your own mass
as m, then the force that the Earth is exerting on you right now is given by the
equation of gravity:

Force = G x First mass X Second mass
Distance2

Earth's mass x Your massYour weight = G x Earth's radius2
ME m= G x

or, rearranging the terms:
RE2

G  X  M E   )

RE2
Note that this equation is in the form: Force = Mass x [something in square
brackets]. If we compare this to Newton's second law, Force = Mass X Acceler-
ation, we see that what's in square brackets must be the acceleration you would
feel if gravity were the only force acting on you. This missing number is identi-
cal to the quantity we call g in Chapter 3. In other words, g is the acceleration
due to gravity at the Earth's surface:

Force = Mass x g = Weight
G X MEand

Your weight = m x

g =
RE2

This result is extremely important. For Galileo, g was a number to be measured,
but whose value he could not predict. For Newton, on the other hand, g was a
number that could be calculated purely from the size and mass of the Earth.

One way of keeping weight and mass distinct in your mind is to remember
that weight can change from one place to another; for instance, apples would
weigh less on the Moon than on Earth, as shown in Figure 5-4. The mass of the

FIGURE 5-4. The weight of an
object is different on Earth and
on the Moon, but its mass is
the same.
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apples however, which measures the amount of material in the apples, is the same
everywhere in the universe.

T h e  E a r t h ' s  G r a v i t y
Given that the mass of the Earth is 6 x 1024 kilograms, what is the acceleration
due to gravity at the Earth's surface?

REASONING AND SOLUTION: To answer this question, we just have to put the
Earth's mass and radius into the expression for g given previously.

g = G X ME
RE2

g =  6.674 x 10-11 m3/s2-kg x 6  x 1024 kg

= 9.8 meters/second2
(6.4 x 106 m2)2

This number is the same constant that Galileo and others measured. Notice that
because we now understand where g comes from, we can predict the appropri-
ate value of gravitational acceleration not only for the Earth, but also for any
object in the universe, provided we know its mass and radius. •

Weighty  Mat te rs
A cantaloupe has a mass of 0.5 kilograms. What does it weigh?

REASONING AND SOLUTION: We are given a mass and want to find its weight. To
answer this question, we have to calculate the force of gravity exerted on the
cantaloupe at the Earth's surface. The relation between mass and weight is:

Weight = Mass X g
= 0.5 kg X 9.8 m/s2
= 4.9 kg-m/s2 = 4.9 newtons

This value is the weight of the cantaloupe. Note that the kilogram is not a unit
of weight, despite its popular use. •

G R AV I T Y  A N D  ORBITS

Of all the motions that Newton and his contemporaries wanted to understand,
0 none were more fascinating than the stately, sweeping orbits of moons and

planets. Today's scientists have applied the same orbital equations derived in
Newton's time to send humans to the Moon and robotic landrovers to the sur-
face of the red planet Mars.

Circular Motion in Terms of  Newton's Laws
Let's begin our analysis of orbits by looking quantitatively at the orbit of the
Moon (or a planet) from the point of view of Newton's laws of motion. The fact
that moons and planets do not move in straight lines tells us, from Newton's first
law, that there must be a force acting to accelerate them; that is, to change the
direction of their motion. In Chapter 3, we saw that the acceleration, ac, required
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= mac = r
An object stays in a circular path only as long as this force

acts. If the force disappears, Newton's first law of motion tells us that the object
moves off in a straight line. Think of swinging a weight on a string in a circle
around your head. The force that keeps the weight circling is the tension in the
string; you can feel that force in your fingers. However, if you let go of the string,
the weight doesn't keep circling around, but it flies off in a straight line in what-
ever direction it happened to be going at the moment of release.

Discus throwers use exactly this kind of action (Figure 5-5). First they spin
around so that the discus, held at arm's length, is moving in a circular path (be-
case the thrower's hand is exerting a force, pulling the discus in). Then they re-
lease the discus so that it flies out over the field in a straight line.

The force in circular motion is directed toward the center of the circle, and
hence is sometimes called the centripetal force (which means center-seeking
force). The action of the centripetal force is illustrated for a weight on a string
in Figure 5-6. The natural tendency of the weight is to move off in a straight line,
as shown at point A. To keep it from flying off, you have to exert a force to pull
it back into the circle. It then wants to fly off again, so that you have to pull it
back again, and so on. The tug you feel in your hand as the weight goes around

to keep an object such as the Moon moving around in a circular
path of radius r with a constant velocity v is

v2ac = —r
This quantity is the centripetal acceleration. Newton's second law
tells us that the force needed to produce this acceleration equals
the product of the mass of the object times its acceleration. So
the force needed to keep the object moving in a circle is

mv2

FIGURE 5-5. A discus moves in a circular path as long as the
athlete holds on to it, but it moves in a straight line once it is
released.

The robot rover Sojourner
explored the surface of
Mars for several days in
1997 before breaking down
from the harsh conditions.

FIGURE 5-6. Centripetal
force acts to keep the
weight moving in a circle at
the end of the string.
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FIGURE 5-7.  When you're
driving in a car moving
around a curve, you feel the
car seat and door of the car
pushing you in toward the
center of the circle.

Centripetal force
on car (from

friction of car
tires on road)

Velocity of car;
tendency for car
and passenger to

travel in straight line

Inward force
on passenger

(from seat, door
of car)

is the reaction to your constantly pulling on the string, constantly tugging the
weight back.

Another familiar example of centripetal force is a person sitting in a car as
it goes around a curve (Figure 5-7). As the car starts into the turn, the passen-
ger tends to move ahead in a straight line, following Newton's first law. The car
seat or car door must exert a contact or frictional force to keep the passenger
moving in a curve along with the car. This contact force is the centripetal force:
the force that makes the passenger move in a circle. The passenger feels as if she
is being thrown toward the outside of the car, but that is due to her inertia re-
sisting the force pushing her toward the inside.

t a t  T h e  Orbit Equationr

Centripetal force is not a different kind of force; it simply describes any force
that keeps an object moving in a circle. In the case of the circling weight, you
can feel the force pulling on the string, so identifying centripetal force is simple.
In the case of the Moon, however, the origin of the centripetal force isn't so ob-
vious. Newton's insight was so important because he realized that gravity is the
force that binds the solar system together by pulling the planets and moons back
into their orbits. In fact, the basic equation that defines the orbit of a satellite—
be it a planet, a moon, or the space shuttle—follows from this statement.
1. In words:

The centripetal force on a satellite in circular orbit is equal to the force of
gravity exerted on that object.

2. In an equation with words:
Satellite mass x Satellite velocity squared

Orbital distance
G X Satellite mass x Central mass

Distance squared
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3. In an equation with symbols:
111V2 G M m

r r 2
where m is the mass of the satellite, M is the mass of the central body, r is
the distance from the satellite to the center of the central body, and v is the
speed of the satellite in its orbit.

This equation is simply an application of Newton's second law: force (the grav-
itational force, GMm/r2) equals mass (m) times acceleration (v2/r).

If we multiply both sides of this equation by r and divide both sides by m,
we find that it reduces to

v2 — GM
r

U

U

This orbit equation is a good one to examine because it tells us that for a given
distance, r, between a satellite and its central body, there is one and only one
speed, v, at which the satellite can move and remain in orbit (Figure 5-8). It also
tells us that the speed at which a satellite has to move doesn't depend in any way
on its mass. For example, a grapefruit orbiting the Earth at the same distance as
the Moon would circle the Earth every 29 days, just as the Moon does. All mod-
ern satellites obey the orbit equation; for some examples of satellite applications,
see Connection on page 106.

The force of gravity is not much different at the distance of a typical satel-
lite orbit, such as the orbit of the space shuttle (6400 km + 200 km above Earth's
surface), than it is where you are sitting (r = 6400 km). Why, then, does the shut-
tle stay in orbit? The reason is that enormous amounts of energy have been ex-
pended to get the shuttle moving very fast, so that its tendency to fly off in a
straight line is just balanced by gravity. In that sense, the only reason you aren't
in orbit at this moment is that you're not moving fast enough! How fast does the
shuttle have to move? See Example 5-5 at the end of this chapter.

Apparent Weightlessness
We often see pictures of astronauts floating around in the space shuttle or the
Space Station and we speak of them as being weightless. In fact, the force of
the Earth's gravity at the orbit of the shuttle is pretty much the same as it is at

(a) (b) (c)

FIGURE 5-8. (a) The space shuttle reaches orbit by using its rocket boosters to achieve
high acceleration. (b) Once in stable orbit, the space shuttle's speed is determined by
the orbit equation; it does not use its engines at all. (c) To return to Earth, the shuttle
fires its small thruster rockets to slow down, enabling Earth's gravity to pull it back
down to the surface.



Physics and Modern Technology Sate l l i tes

The physics of orbiting objects was first worked out by Kepler and Newton in the seventeenth century.
Not until 1957 did advances in rocket technology and electronic instrumentation lead to a successful
satellite launch. Today hundreds of satellites circle the Earth, from simple observation satellites with a
camera to the International Space Station. However, the physics involved in all these orbits is the same.

With a navigation system in your
car, you can locate your position
on a road map of your
neighborhood.

The Global Positioning System (GPS)
uses 24 satellites to pinpoint the
position of an object to within 15
meters or less, anywhere on the globe.

A weather satellite took this picture
of a volcanic smoke plume rising
from Mt. Etna in Sicily.

Long-distance cell phones receive
messages relayed by a network of
communications satellites.

The Hubble Space Telescope can
see astronomical objects from
above Earth's atmosphere, greatly
increasing its effectiveness.
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the surface, so the astronauts aren't weightless. The force of gravity has not sud-
denly gotten smaller. Astronauts float in the shuttle because of the spaceship's
acceleration as it moves around its orbit.

As seen from outside the spaceship, the only force acting is the Earth's
gravity. Consequently, the spaceship is continuously pulled toward the Earth—
otherwise it would escape into space. You can think of the spaceship (and its con-
tents) as falling toward the Earth, even as it speeds along in its orbit. The point
is that everything in the ship is falling at the same rate. So if the astronaut steps
on a scale, that scale is falling at the same rate he is, and his weight registers as
zero. We achieve apparent weightlessness in the presence of gravity.

40..
A. Deve lop  Your Intuit ion:  Weight  in an Elevator

.•  • . • • 4 ' iv ; When you're in an elevator, you usually feel heavier when the eleva-
14A/.01' f o r  starts up and lighter when it starts down. Why?

These shifts in apparent weight, which would actually register as changes
in your weight on a scale, come about even though the force of the Earth's
gravity is essentially constant throughout the elevator trip (Figure 5-9). When
you start upward, the elevator floor is accelerated into your feet, exerting a
force that accelerates you upward. By Newton's third law of motion, your feet
exert an equal and opposite force on the floor—or on a scale, if you're stand-
ing on one. This extra force causes the spring in the scale to compress and the
reading to increase. The reverse process causes a feeling of partial weight-
lessness when the elevator starts down.

= g(down)

(b)

FIGURE 5-9. A person on a scale in an elevator feels (a) heavier while accelerating
up, against gravity, and (b) lighter while accelerating down, with gravity.

Connection
Geosynchronous Orbits
Much of our modern communications system depends on relaying signals through
satellites in orbit above the Earth. A particularly useful orbit is one in which the
satellite moves just fast enough so that it appears to remain stationary above a
point on the Earth.

A4.
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(a)

Consider, for example, a satellite in orbit above the Earth's equator. If the
satellite completes one revolution in 24 hours, that satellite appears to hover over
the same spot on the Earth's surface, since that spot also completes a revolution
in 24 hours. Such a satellite is said to be in geosynchronous orbit. What would
the radius of the orbit have to be for the orbit to be geosynchronous?

If the satellite's orbit is located a distance R from the center of the Earth,
then the satellite must travel a distance 2irR in 1 day. A day consists of 24 hours,
each of which has 60 minutes of 60 seconds each. Consequently, the number of
seconds in a day is

t = (24 hours/day) x (60 minutes/hour) X (60 seconds/minute) = 86,400 s
Now, the speed of the satellite must be

27rRv= t
If we put this value of the velocity into the orbit equation, we find that

GM 4,72R2=
R t 2

so that the radius of the orbit is
R3 _ GMt2

477-2
If we put in the mass of the Earth (6 X 1024 kg) and the value of t, we find that

R =  4.2 x 107 m
Thus, to be in geosynchronous orbit, a satellite has to be about 42,000 km from
the Earth's center, or 36,000 km (about 24,000 miles) above the Earth's surface.

(b) (c)

FIGURE 5-10. In the Global Positioning System (GPS), (a) a satellite identifies the re-
ceiver in a car as being somewhere on a circle. (b) When a second satellite identifies
the same receiver as being on another circle, the car must be located at one of the
two points where the circles intersect. (c) The third satellite determines exactly where
the car is located.

eTh
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U This is a very high orbit. For reference, the space shuttle normally orbits a little
over 100 miles above the surface.

The Global Positioning System (GPS), first developed by the United States
Air Force, consists of 24 satellites placed in six orbits: These orbits are about 11,000
miles above the Earth's surface; they are not geosynchronous, so they move rela-
tive to the Earth's surface. Portable computers on your car, your plane, or even in
your hand can pick up signals from three or more of these satellites and use them
to determine your location on the Earth to within a few yards (Figure 5-10). •

Physics in the Making
The Recovery of  Halley's Comet
Of all celestial phenomena, none seemed more portentous and magical to the
ancients than comets. These glorious lights in the sky, with their luminous sweep-
ing tails, are not like the planets. They appear sporadically, and even in Newton's
day appeared unpredictably. Yet even comets are subject to Newton's laws.

We associate the discovery of the orbital nature of comets with the British
astronomer Edmond Halley (1656-1742). Halley led an adventurous (even
swashbuckling) life before he settled down as Britain's Astronomer Royal. At
various points in his life, he ran a diving company, captained a Royal Navy sur-
vey ship (facing down a mutiny in the process) and, if we are to believe the leg-
end, used his growing reputation as an astronomer to travel around European
capitals as a secret agent for his country. He was the first European astronomer
to produce modern maps of the skies of the Southern Hemisphere, and his nav-
igational maps of the Earth's magnetic field were used well into the nineteenth
century.

(a)

Halley's comet: (a) on the Bayeux tapestry, showing the comet in 1066 A.D., and
(b) in a telescope photo from 1986.

(b)

•
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Halley was so wedded to the adventurous life that when he was proposed
for a professorship at Oxford, one colleague wrote, "Mr. Halley expects [the pro-
fessorship], who now talks, swears, and drinks brandy like a sea captain; so much
that I fear that his ill behavior will deprive him of the advantage of this vacancy."

Nevertheless, he got the post at Oxford (the house he lived in is still there).
About the time of Halley's appointment, astronomers were starting to think
about explaining comets. Even though they knew about universal gravitation,
they didn't have the mathematical tools to solve the problem of comets' elon-
gated orbits. The reason for this difficulty is that, except for orbits that are nearly
circular like those of the planets, the distance between a satellite and its central
body varies considerably from one point to the next. Hence the gravitational
force is not the same at each point around the orbit. The problem of deducing
the shape of an orbit under these circumstances is a difficult one, but one that
could be dealt with using the new mathematics of calculus, which was invented
independently by Isaac Newton and the German mathematician Gottfried
Leibniz.

In 1684, Halley visited Newton at Cambridge. Newton told him over dinner
that according to his calculations, all bodies subject to a gravitational force would
move in orbits shaped like ellipses. Bolstered by this information, Halley ana-
lyzed the historical records of some 24 comets. Knowing that the orbits had to
be elliptical, he was able to use the observations to determine exactly the ellip-
tical path along which each comet moved.

He found that three recorded comets—those that had appeared in 1531,1607,
and 1682—seemed to be following the same orbit. He realized that the sightings
represented not three separate comets, but one comet that was appearing over
and over again at intervals of about 75 or 76 years.

Predicting the next appearance of the comet wasn't as simple as you might
think, because the gravitational effects of Jupiter and Saturn could change the
period of the comet by several years. After some work, Halley predicted that the
comet would reappear in 1758. On Christmas day 1758, an amateur astronomer
in Germany sighted the comet coming back toward Earth. This so-called recov-
ery of what is now known as Halley's comet marked a great triumph for the New-
tonian picture of the world.

With characteristic aplomb, Halley (who had died in 1742) had had the last
word on his prediction of the comet's return: "Wherefore if [the comet] should
return again about the year 1758, candid posterity will not refuse to acknowl-
edge that this was first discovered by an Englishman." •

THINKING M O R E  A B

The Clockwork Universe:
Predictability

N e w t o n  bequeathed to posterity a picture of
the universe that is beautiful and ordered.

The planets orbit the Sun in stately paths, forever
trying to move off in straight lines, forever pre-
vented from doing so by the inward tug of gray-

ity. The same laws that operate in the cosmos op-
erate on Earth, and applying the scientific method
led to the discovery of these laws. To an observer
with Newton's perspective, the universe was like
a clock, wound up and ticking along according to
definite laws.

The Newtonian universe seemed regular and
predictable. I f  you knew the present state of a
system and the forces acting on it, the laws of
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motion would allow you to predict its entire fu-
ture. This notion was taken to the extreme by
the French mathematician Pierre Simon Laplace
(1749-1827), who proposed the notion o f  the
Divine Calculator. His argument (in modern lan-
guage) was this: if we knew the position and ve-
locity of every atom in the universe and we had
infinite computational power, then we could pre-
dict the position and velocity of every atom in the
universe for all time. He made no distinction be-
tween an atom in a rock and an atom in your
hand. According to  the argument, everyone's
movements are completely determined by the
laws of physics to the end of time. You cannot
choose your future. What is to be was determined
from the very beginning.

While this argument raises many interesting
questions, it has been rendered moot by two mod-
ern developments in science. One of these, the
Heisenberg uncertainty principle (see Chapter
22), tells us that at the level of the atom it is im-
possible to know simultaneously and exactly both
the position and velocity of any particle. (Heisen-
berg showed that any measurement of a particle's
position alters its velocity, and vice versa.) Thus,
you can never get all the information the Divine
Calculator needs to begin working.

More recently, scientists working with com-
puter models have discovered that there are many
systems in nature that can be described in simple
Newtonian terms but whose futures are extremely
sensitive to initial conditions, making them, to all
intents and purposes, unpredictable. These are

Whitewater is an example of a chaotic
system, in which a small change in the
initial position can produce a large
difference in the outcome.

called "chaotic systems," and the field of study de-
voted to them is called chaos theory.

Whitewater on a mountain stream provides a
familiar example of a chaotic system. Imagine put-
ting two chips of wood in water on the upstream
side of the rapids. No matter how small you make
the chips, or how close together they are at the be-
ginning, those chips (and the water on which they
ride) may be widely separated by the time they get
to the end. If you knew the exact initial position
of a chip and every detail of the waterway's shape
and other characteristics with complete mathe-
matical precision, you could, in principle, predict
where the chip will come out downstream. But if
there is the slightest uncertainty in your initial de-
scription, no matter how small, the actual position
of the chip and your prediction will differ, often
wildly. Every measurement in the real world has
some uncertainty associated with it, so it is never
possible to determine the exact position of the chip
at the start of its trip. For all practical purposes,
you cannot predict where it will come out even if
you know all the forces acting on it.

The existence of chaos, then, tells us that there
are some systems in nature in which the Newton-
ian vision of  a completely predictable universe
simply doesn't apply. Some important aspects of
our lives, ranging from next week's weather to
next year's health, are inherently unpredictable.
Does science's inability to answer such important
questions diminish its importance to society? In
what ways does society prepare itself for the un-
predictable aspects of the physical world?
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Summary
Newton's law of universal gravitation describes gravity, the
most prevalent force in our daily lives. A t  the Earth's sur-
face, the gravitational force exerted on an object is called
its weight. The same force that pulls a falling apple to Earth
supplies the centripetal force that causes the Moon to curve
around the Earth in its orbit. Indeed, the force of  gravity
(with the same gravitational constant, G) operates every-

Key Terms
centripetal force The force in circular motion, directed

toward the center of the circle, that keeps an object
following a curved or circular path. (p. 103)

gravitational constant (G) The exact numerical relation
between the masses of two objects and the distance
between them, on the one hand, and the gravitational force
between them, on the other. (p. 98)

gravity The attractive force that acts between any two objects
in the universe. (p. 97)

Key Equations

where, with pairs of forces between every pair of masses in
the universe. Newton's laws of motion, together with the law
of universal gravitation, describe the orbits o f  planets,
moons, comets, and satellites. They also allow us to derive
Galileo's results and Kepler's laws o f  planetary motion
(Chapter 3), thereby unifying the sciences of mechanics and
astronomy.

Newton's law of universal gravitation Newton's law that
between any two objects in the universe there is an
attractive force (gravity) that is proportional to the masses
of the objects and inversely proportional to the square of
the distance between them. (p. 98)

weight The force of gravity on an object. (p. 100)

First mass x  Second massForce = G X
Distance2

Force = Mass X g = Weight

(Velocity of a satellite)2 = G X Mass of central body
Radius of orbit

Constants
g =  9.8 m/s2

G = 6.674 x  10-11 m3/s2-kg

Review
1. What similarity did Newton see between the Moon and an

apple?

2. Why is gravity called a universal force?

3. State the law of universal gravitation.

4. Why is the gravitational constant, G, called a constant of
proportionality? In Newton's equation for gravity, what is
proportional to what?

5. How did Henry Cavendish determine the value of the grav-
itational constant, G?

6. What is the difference between weight and mass?

7. Does a bathroom scale measure weight or mass? Explain
your answer.

8. What is centripetal force? Give an example of this force in
action.

9. What supplies the centripetal force that keeps the planets
in their orbits?

10. What is the relation between the velocity of a satellite, the
radius of its orbit, and the mass of the central body?
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11. According to the orbital equation, what factors determine
the velocity of a satellite in orbit?

12. What is a geosynchronous orbit? Why are such orbits im-
portant to modern technology?

13. How did the work of Edmond Halley support Newton's
theories?

14. What is a chaotic system?
15. What is the main idea o f  Newton's universal law o f

gravitation?
16. The gravitational constant is now known to 1 part in 10,000,

yet physicists are still trying to measure this constant. Why?

Questions

17. Why did scholars of the sixteenth century distinguish be-
tween "terrestrial gravity" and "celestial gravity?"

18. What are the differences between the gravitational con-
stant, G, and the acceleration due to gravity, g? Why is g
not considered to be a universal constant?

19. Newton's equation for  gravity incorporates an inverse
square relationship between the force of gravity and the
distance between two objects. What other familiar phe-
nomena exhibit an inverse square relationship? (Hint: See
Chapter 2.)

1. I f  this textbook is sitting on a table, the force of gravity is
pulling i t  down. Why doesn't it fall?

2. Which of the following objects does not exert a gravita-
tional force on you?
a. this book c .  the nearest star
b. the Sun d .  a distant galaxy

3. Two planets with the same diameter are close to each other,
as shown in the figure. One planet has twice as much mass
as the other planet. At which locations (A, B, C, or D) would
both planets' gravitational force pull on you in the same di-
rection? From among these four locations, where would you
stand so that the force of gravity on you is a maximum i.e.,
at which point would you weigh the most?

A O B  C O D

4. Two iron spheres, o f  mass m and 2m, respectively, are
shown in the figure. A t  which location (A, B, C, D, or E)
would the net gravitational force on an object due to these
two spheres be a minimum?

A B  C• •
m

Questions 4, 5

9
2m

E•

5. Two iron spheres, of  mass m and 2m, respectively, are
shown in the figure. A t  which location (A, B, C, D, or E)
would the net gravitational force on an object be at a max-
imum due to these two spheres?

6. I f  you moved to a planet that has the same mass as the
Earth but twice the diameter, how would your weight be
affected?

7. I f  you moved to a planet that has twice the mass of the
Earth and also twice the diameter, how would your weight
be affected?

8. The Earth exerts an 800-N gravitational force on a man.
What gravitational force, if any, does the man exert on the
Earth?

9. The environment in a satellite or space station orbiting the
Earth is often referred to  as a weightless environment.
However, we have defined weight as the force of gravity
on an object. Do you agree that objects on board orbiting
satellites are weightless? Explain.

10. A  bungee jumper feels weightless as she falls toward the
Earth. Obviously the force of gravity has not disappeared
simply because she has jumped off  a high platform. What
accounts for the weightless feeling people get when they
fall freely?

11. The Earth's radius is about 3.7 times larger than the Moon's
radius. If the Earth and the Moon had the same mass, which
would have the greater acceleration due to gravity? Ex-
plain. Since we know that the Earth has a greater acceler-
ation due to gravity, what does this tell you about the mass
of the Earth compared to the mass of the Moon?

Questions 12, 13

12. Consider two planets of mass m and 2m, respectively, or-
biting the same star in circular orbits. The more massive
planet is twice as far from the star as the less massive
planet. Which, if either, planet experiences a stronger grav-
itational attraction to the star? Explain.
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13. Consider two planets of mass m and 2m, respectively, or-
biting the same star in circular orbits. The more massive
planet is twice as far from the star as the less massive
planet. Which planet is moving faster? Which planet has
the shorter orbital period?

14. I f  our own Sun were twice as massive as it is, would the
Earth have to move faster or slower in order to remain in
the same orbit?

15. When Galileo first observed the four largest moons orbit-
ing the planet Jupiter, he quickly determined the time it
took for each moon to complete one orbit. Why won't this
measurement allow us to determine the masses o f  the
moons? Could such a measurement allow us to determine
the mass of Jupiter?

16. How is weight related to mass?
17. How is Newton's law of  gravitation related to Kepler's

third law of planetary motion?
18. Does the Moon fall toward the Earth? Explain.

Problem-Solving Examples

19. I n  Star Trek and other science fiction sagas, you often en-
counter a fictional device called a tractor beam, capable of
pulling objects into the starship. Suppose that an object is
falling under the influence of gravity and drag. In addition,
imagine that a tractor beam on the ground is pulling the
object down. If there is a limit to the force the tractor beam
can exert, will the object still attain a terminal velocity?

20. I f  you fill a bucket partially with water and then swing it
fast enough in a circle over your head, the water will stay
in the bucket even when it is upside down. Since gravity is
pulling the water down, why doesn't it spill out?

21. Why do you weigh less on the Moon than on Earth?
22. Would your mass change i f  you took a trip to the Space

Station? Why or why not?
23. According to some nineteenth-century geological theories

(now largely discredited), the Earth has been shrinking as
it gradually cools. I f  so, would g have changed over geo-
logical time? Would G have changed over geological time?

F o o t b a l l  P l a y e r  M a s s
Suppose a football player has a mass of 120 kg. What is his
weight in newtons? What is his weight in pounds?

REASONING AND SOLUTION: To find the weight in newtons,
use the same equation as in Example 5-2.

Weight = Mass X g
= 120 kg x  9.8 m/s2
= 1176 N

From the Table of  Conversion Factors in Appendix A we
know that multiplying pounds by 4.45 will give newtons, so

Weight (in pounds) — Weight (in newtons)
4.45

1176
4.45 pounds

= 264 pounds

This weight shows the person to be large, but not unusu-
ally so for a football player. •

Weight  o n  t h e  M o o n
The mass of the Moon is MM = 7.18 X 1022 kg and its ra-
dius RM is 1738 km. If your mass is 60 kg, what would you
weigh on the Moon?

REASONING: Once again we have to calculate the force ex-
erted on an object at the surface of an astronomical body.
This time, however, both the mass and the radius of the
body are different from that of the Earth, while G is the
same.

SOLUTION: From the equation that defines weight, we have

Weight = Force due to gravity
G X .A44 x  60 kg

RM2

(6.674 x  10-11 m3/s2-kg) x  (7.18 x 1022 kg) X 60 kg
(1.74 x 106 m)2

= 95 newtons

This weight is about one-sixth of the weight the same ob-
ject would have on the Earth, even though its mass is the
same in both places. •

The Space Shut t l e
We can get an idea of how the orbit equation works by
considering the space shuttle. A  typical shuttle orbit is
200 kilometers (about 120 miles) above the Earth. How
fast does a satellite at this distance have to move to stay
in orbit?

SOLUTION: The equation for a satellite's speed, derived
earlier in this chapter, is

v2 = G M
r

As we saw earlier, the mass of the Earth is 6 x 1024 kg and
its radius is 6.4 x  106 meters. The shuttle orbit, 200,000

ir1
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L I (= 0.2 x 106) meters above the surface, therefore corre-
sponds to a value of r of about 6.6 x 106 meters. If we put
these values into the equation, we find that the square of
the speed of the shuttle in its orbit is

v2 = (6.674 X 10-11 m3/s2-kg) X 6  x  10246.6 X 106kgm
= 6 x  107 in2is2

Taking the square root o f  this value, we see that the
speed is

v =  7.8 X 103 m/s

This speed, equal to almost 8 km (5 miles) per second, is
many times faster than commercial jet aircraft, which
cruise at about 0.3 km (0.2 miles) per second.

One way of getting an idea of this speed is to ask how

Problems

long it would take the shuttle to complete one orbit of the
Earth. We can determine this time by rearranging the def-
inition of speed into the form: time equals distance divided
by speed. The length of the orbit is just the circumference
of a circle of radius r, or 27rr. Thus, the orbital period, or
time for one revolution, is

Orbital period = 2irr

6.6 x  106 m
= 2 r 7.8 x  103 m/s
= 5300 s
= 89 minutes

The space shuttle completes an orbit of the Earth every
hour and a half. •

1. What do you weigh in pounds? What do you weigh in
newtons?

2. What is your mass in kilograms?

3. What would you weigh if the Earth were four times as mas-
sive as it is and its radius were twice its present value?

4. How long would our year be if our Sun were half its pres-
ent mass and the Earth's orbit was in the same place that
it is now?

5. How much would you weigh i f  you were standing on a
mountain 200 km tall (i.e., if you were standing still at about
the altitude of a space shuttle orbit)? How much does this
differ from your weight on the surface of the Earth? Would
you be able to detect this weight difference on an ordinary
bathroom scale?

6. A .  Calculate the force of gravity on a 65-kg person in the
following:
a. at the surface of the Earth (R = 6400 km)
b. at twice the Earth's radius
c. a t  four times the Earth's radius

B. Plot this gravitational force with distance. What pattern
or relationship do you expect to obtain? Does your plot
conform to your expectations?

7. Compare the gravitational force on a 1-kg mass at the sur-
face of  the Earth with that on the surface of  the Moon
(MM = 1/81.3 mass of the Earth; R = 0.27 Earth radius).

8. How much less would you weigh on the top of Mount Ever-
est than at sea level?

9. Calculate the weight in pounds and newtons of  the fol-
lowing items:

a. the Statue of Liberty (205 tons)
b. a  40-ounce softball bat
c. a  solid rocket booster of the space shuttle (5.9 X 105 kg)

10. Calculate the weight in pounds and newtons of the three
objects in Problem 9 if they were: a. on the surface of the
Moon (see Problem 7); b. on the surface of Mars (M = 0.11
mass of the Earth; R = 0.53 Earth radius).

11. Calculate the speed and period of a ball tied to a string of
length 0.3 meters making 2.5 revolutions every second.

12. Calculate the average speed of the Moon in kilometers per
second around the Earth. The Moon has a period of revo-
lution of 27.3 days and an average distance from the Earth
of 3.84 x  108 meters.

13. Calculate the speed at the edge of a compact disc (radius =
6 cm) that rotates 3.5 revolutions per second.

14. Calculate the centripetal force exerted o n  the Earth
by the Sun. Assume that the period of revolution for the
Earth is 365.25 days and the average distance is 1.5 x
108 km.

15. The height of a mountain is limited by the ability of the
atoms at the bottom to sustain the weight of the materials
above them. Assuming that the tallest mountains on Earth
are near this limit, how tall could a mountain be on the
Moon? On Mars?
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Investigations

1. I n  Chapter 1, we talk about astrology and whether a planet
or star can influence our lives. Calculate the gravitational
force on a newborn infant exerted by a star the size of the
Sun 1 light year (9.5 X 1015 m) away. Compare i t  to the
gravitational force exerted by a 100-kg physician 0.1 m
away.

2. One objection that Copernicus's contemporaries raised to
his theory was that if the Earth were really turning, we would
all be thrown off the way that clay is thrown off a spinning
potter's wheel. Use Newton's laws of motion and the law of
universal gravitation to counter this argument.

3. In  what sense is  the Newtonian universe simpler than
Ptolemy's? Suppose observations had shown that the two
did equally well at explaining the data. Construct an argu-
ment you would make to say that Newton's universe should
still be preferred.

4. I f  Kepler had been transported to another solar system, what
would he have had to do in order to show that his laws ap-
plied there? What would Newton have had to do?

W W W  Resources

5. Some astronomers have proposed that Newton's law of grav-
itation may have to be modified over very large distances—
that the gravitational "constant" varies over the immense
scale of galaxies. What evidence do we have that gravitation
is a universal force? How might you test this assumption?
(Hint: Search the Internet for  information on Modified
Newtonian Dynamics or MOND.)

6. In  what ways does gravity affect the form and function of
living things? Relate this to both plants and animals.

7. Use the web to investigate some of the ongoing experiments
to determine the value o f  G with greater precision and
accuracy. Why is it so difficult to measure G to better than
three decimal places, when most other physical constants are
known to as many as 10 places?

8. Read a biography of Pierre Simon Laplace, who was one of
history's most influential scientists. What were his major
achievements? What major historical events occurred dur-
ing his lifetime? How did his research influence his philo-
sophical ideas?

See the Physics Matters home page at www.wiley.com/college/trefil for valuable web links.

1. www.curtin.edu.au/curtin/dept/phys-sci/gravity/ An online gravity tutorial at the Department of Applied Physics, Curtin
University of Technology.

2. www.physics.purdue.edu/class/applets/NewtonsCannon/newtmtn.html A  humorous Java applet animating a woodcut
from Newton's Principia that demonstrates satellite motion.

3. www.physicsclassroom.com/Class/circles/circtoc.html An animated tutorial from physicsclassroom.com discussing cir-
cular motion, planetary motion and universal gravitation.

4. liftoff.msfc.nasa.gov/toc.asp?s=Satellites Contains tutorials on types of satellites (including a section on geosynchronous
satellites) and an extensive section on tracking current Earth-orbiting spacecraft live via the web.


