Conservation
of Linear
Momentum

If no external forces act on a

system, then the total momentum
of the system is constant.

PHYSICS AROUND US . . . Dealing with Momentum

ou get in your car, put your books on the seat
Ynext to you, and drive away. A squirrel runs

across the road and you jam on your brakes to
avoid hitting it. As you do so, the pile of books slides
onto the floor of the car.

Later that day, in the cafeteria, you watch a fel-
low student hurrying across the floor with her tray.
Stopping suddenly, she reaches out to grab her soft-
drink cup to keep it from falling over and some of the
drink sloshes over on her hand.

That night, you turn on your TV to watch a hockey
game. The puck comes free and two players skate for

it at top speed. They collide just as they reach the puck
and bounce off each other, taking themselves out of
the action and leaving the puck for another player to
pick up.

All of these occurrences (and countless more) il-
lustrate a quantity called momentum, whose proper-
ties follow from Newton’s laws of motion. And believe
it or not, in addition to being involved in everyday
events, momentum also governs such large-scale pro-
cesses as the formation of planets and stars. As a re-
sult, momentum is one of the most important physical
attributes of an object in motion.
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D LINEAR MOMENTUM

In Chapter 4 we introduced the property of inertia, which represents the ten-
dency of a moving object to keep moving or a stationary object to remain sta-
tionary. Because of inertia, the only way to change an object’s motion is to apply
a force, as Newton’s laws tell us. Everyday experiences provide all of us with an
intuitive understanding of this concept. For example, we sense that a massive ob-
ject such as a large train is very hard to stop, requiring a lot of force, even if it
is moving slowly. You certainly wouldn’t want to try and stop a train by stand-
ing in front of it!

At the same time, a small object moving very fast—a rifle bullet, for
example—is also very hard to stop. Thus, our everyday experience seems to be
telling us that the tendency of a moving object to remain in motion depends both
on the mass of the object and on its speed. The greater the mass or the speed,
the more difficult it is to stop the object or change its direction of motion.

Physicists encapsulate these notions in a quantity called momentum (plural,
momenta). Momentum can be defined both in words and as an equation.

1. In words:

The momentum of an object is the product of that object’s mass and
velocity.

That means an increase in either mass or velocity increases momentum
proportionally.

2. In an equation with words:
Momentum = Mass X Velocity
3. In an equation with symbols:
p=mXvy

Here we use the letter p to denote momentum.

As we see in this chapter, momentum defined in this way is an extraordinarily
useful concept in physics, and one that is deeply embedded in Newton’s laws of
motion. To begin, however, this definition leads to three important consequences.

1. Momentum is a vector quantity. Like velocity, momentum has both a mag-
nitude and a direction. Thus, the rules for adding the total momenta of sev-
eral objects are the standard rules for vector addition (see Chapter 2).

2. The definition of momentum matches our intuition about the tendency
of objects to remain in motion. The equation tells us that the larger the
mass or the greater the velocity, the greater the momentum.

3. The units of momentum are those of mass times velocity, or kg-m/s.
There is no special name for this unit; it is simply written as a combination
of the three basic units for mass, distance, and time.

Note that this product of mass times velocity is sometimes called linear
momentum to distinguish it from angular momentum, which we’ll discuss in the
next chapter. In normal conversation, the term momentum by itself is under-
stood to refer to linear momentum because we are referring to an object mov-

ing in a straight line. You can see other examples of momentum in Looking at
Momentum.



Looking at Momen

If you’ve ever swatted at a bee buzzing around your head, you know you can brush it away pretty eas-
ily. The momentum of a thrown baseball is about 1000 times greater than that, and you can certainly
feel the impact when you catch it or hit it with a bat. A charging rhinoceros has about 1000 times more
momentum than a baseball and could trample you flat. So just imagine the impact of a fully loaded oil
supertanker, the biggest moving objects ever built, or the effect of a meteor crashing into the Earth.

10! kg-m/s

102 kg-m/s

Bee, about
0.01 kg-m/s

10" kg-m/s v
Baseball, about 10
kg-m/
e 104 kg-m/s
Rnoceros, about
20,000 kg-m/s
10 kg-m/s

Meteor, about 5 trillion kg-m/s

Supertanker, about 10 billion
kg-m/s
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Yy,
{(c)s Develop Your Intuition: Billiards Momentum
a‘?j Two billiard balls of equal mass m roll toward each other at equal
4ApD

speeds, v. What is the total momentum of the two balls?

Since the masses are equal and the speeds are equal, the magnitudes of
the individual momenta of the two balls are equal. However, momentum is
a vector quantity and has a direction. In this case, one ball has a momentum
of magnitude mv directed toward the right and the other has a momentum of
magnitude myv directed toward the left. The two momenta cancel each other
out, so the total momentum of this particular system with two billiard balls is
zero. In general, the total momentum of a group of objects does not have to
be larger than the momentum of each individual object. It can even be zero,
as in this case.

Momentum and Newtons Laws

We can learn more about momentum by looking at Newton’s second law of mo-
tion. In equation form, it reads

F=mXa

But since acceleration is defined to be the change in velocity divided by the time
it takes that change to occur, this equation can be rewritten
P Ay
=iy
At
where the Greek letter capital delta, A, should be read “the change in” (see
Chapter 2).
Now we can play a little mathematical trick. If the mass of the object in mo-
tion doesn’t change, then the mass multiplied by the change in velocity must be
the same as the change in the product of mass times velocity.

mAy = A(mv)

(Can you convince yourself that this is true?) In this case, we can write Newton’s
second law as

A(mv)
g =
At

In other words, this variation of Newton’s second law tells us that the net
force applied to an object is equal to the change in that object’s momentum di-
vided by the time it takes the momentum to change. The concept of momentum,
then, is actually an integral part of Newton’s laws and not a concept that has to
be added to it.

Although we have assumed here that the mass of the object is constant, the
equation is actually true for the more general case in which the mass changes as
well. This situation may arise, for example, during the launch of a rocket because
the mass of the rocket decreases as fuel is burned during the ascent.

This version of Newton’s second law turns out to be helpful in examining
more about momentum, as we see in the next section. It also turns out that by
examining changes in momentum, we can solve problems that are difficult or im-
possible to solve by considering only forces and accelerations.
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IMPULSE

We can rearrange Newton’s second law as written in the last section to get a bet-
ter understanding of how forces act to change the momentum of a system.

1. In words:

The change in momentum is equal to the product of the net external force
and the time during which it acts.

2. In an equation with words:
Change in momentum = Net force X Time interval
3. In an equation with symbols:

A(mv) = F X At

This form of Newton’s second law tells us that a change in the momentum
of a system is equal to the product of the net force that acts on it multiplied by
the length of time that the force acts. In other words, a small force acting over a
long time can produce the same change in momentum as a large force acting
over a small time.

Physicists use the term impulse to refer to the product of the force multi-
plied by the time over which it acts. (This is another example of a common word
in English given a very specific meaning in physics.) In terms of impulse, then,
Newton’s second law can be restated

Impulse = Change in momentum

This version is often called the impulse-momentum relationship.

Large Forces Acting for Short Times

Think of a tennis ball moving through the air while the player
brings the racquet around to start his swing (Figure 6-1). The
ball and the head of the racquet are in contact for only a frac-
tion of a second, but during that short period the force is quite
high. The total impulse, then, is large and the ball has a large
momentum when it leaves the racquet. (See Example 6-2 in
the Problem-Solving Examples, page 135.)

Small Forces Acting
over Long Times

Think about a complementary case, in which a huge cruise
ship enters a harbor and is nudged into place by a tugboat
(Figure 6-2). The tugboat may push on the ship for several
minutes, exerting a (relatively) small force over a long time.
The direction of motion (and therefore the velocity) of the ship changes slightly
as a result, but its mass is so large that even a tiny change in velocity produces
a large change in momentum. To produce a large change in momentum, a large
impulse is required, which is why the tugboat pushes for so long. (See Example
6-3 in the Problem-Solving Examples, page 135.)

Impulse 121

FIGURE 6-1. When a tennis
ball is hit, the force of the
impact often deforms the
ball briefly before the ball
breaks contact with the
racquet.

FIGURE 6-2. A tugboat
moves a much larger cruise
ship by pushing against it
steadily for a period of time,
changing the ship’s momen-
tum bit by bit.



122 CHAPTER 6 Conservation of Linear Momentum

) ADDING MOMENTA

Have you played a game of pool recently? If so, you remember hitting the white
cue ball with the cue stick so that the cue ball collided with a colored ball, pro-
pelling the colored ball toward a pocket. Before the collision, the colored ball
was stationary, while the cue ball was moving with a (more or less) constant ve-
locity. After the collision, both balls were moving, although less swiftly than the
cue ball had been moving before. You can see the same sort of behavior in many
games; bowling, marbles, and croquet are examples. And, as we see in Chapter 9,
such collisions are constantly taking place between the atoms that make up ma-
terial objects. In all these cases, a transfer of momentum takes place between two
colliding objects.

Total Momentum

Billiard balls and collections of atoms are examples of systems made up of many
particles, each of which has a mass and a velocity. The total momentum P of such
a system is defined as the sum of the momenta of all the objects in it. For the
moment, let’s talk only about objects that are all moving along the same line,
either to the right or to the left.

CASE 1 = Two balls moving in the same direction.
If the balls have masses m1; and m, and velocities vy and v;, respectively, and both
are moving to the right, then the total momentum of the system is

P= myvy + movy

The total momentum of this system (Figure 6-3a) is, like the velocities, directed
to the right.

CASE 2 = Two balls moving in opposite directions.

If the balls have masses m; and m, and velocities v; and v,, respectively, but the
first is moving to the right and the second is moving to the left, then the total
momentum of the system is

P= mvy — mpvy

In this case, the two momenta are in opposite directions (Figure 6-3b). In the
special case in which the balls have equal momenta (for example, if they have
the same mass and speed), then the total momentum of the system is zero.

CASE 3 = More than two balls.

In this case (Figure 6-3¢), the total momentum is the sum of all of the momenta of
the balls. See that m; and m, are moving to the right, so their momenta are added,
while m3, m4, and ms are moving to the left, so their momenta are subtracted.

P= mivy + mpvy — M3v3 — MyVy — MsVs

Internal Forces

Newton’s laws tell us that when two billiard balls (or two atoms) collide, they
exert forces on each other. If we call F}, the force that the first ball exerts on the



Adding Momenta

%) V2 Total momentum
(a) - QO—> P=mv; + myv,
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Vo g v Total momentum
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FIGURE 6-3. Balls of various masses move along the same line. When two balls are
moving to the right (a), the total momentum is the sum of the individual momenta
and is directed to the right. When all of the balls are not moving in the same direction
(b, ¢), the total momentum is calculated by taking the difference between the
momenta of the right-moving balls and of the left-moving balls.

second and F>; the force that the second ball exerts on the first, then Newton’s
third law tells us that

Bygi= wFay
We say that these kinds of forces are internally generated in the two- v Vo
ball system. When we add up all the forces on the system, they cancel
each other out. Thus, although each of the two balls feels an unbalanced =

force (and therefore accelerates), the entire system feels no net force.

Let’s see how this works out in a simple example (Figure 6-4). Sup-
pose we have two balls of mass m rolling toward each other with speeds
v1 and v,. The impulse equation for the first ball says that

A (mvl) = F At

The equation for the second ball is

123

FIGURE 6-4. Two balls of
mass m roll toward each

e other with speeds vy and vs.
A(mvy) = FioAt The internal forces of the

; Ilisi t -
If we add these two equations together, we find that e

A(mvy + mvy) = (Fip + Fo1) At =0

The fact that the sum of the two forces is equal to zero follows from Newton’s
third law: these two forces must be equal and opposite.

A little thought should convince you that this result always holds no matter
how many billiard balls or atoms are in a system. Whenever there is a collision
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between two objects, the change in the sum of the momenta of those two objects
is zero because the equal and opposite pairs of forces always cancel.
This result leads to an important statement about momentum:

Internally generated forces cannot change the momentum of a system.
Or, stated in a more positive way,

Only external forces can change the overall momentum of a system.

Conservation of Momentum

Because internal forces cannot change the total momentum of a system, we can
derive a very important consequence from Newton’s laws.

1. In words:

In the absence of external forces, the change in the total momentum of a
system is zero.

2. In an equation with words:
il'\;'I The change in momentum of an isolated system equals zero.
3. In an equation with symbols:
AP=0

When physicists find a quantity that does not change during an interaction,
they say that the quantity is “conserved.” The conclusion we have just reached,
therefore, is called the law of conservation of momentum and is stated as

If no external forces act on a system,
then the total momentum of that system remains the same.

In most practical situations, the law of conservation of momentum can also be
written as

Initial momentum = Final momentum
or Pi = Pf

The law of conservation of momentum is of fundamental importance in
physics. The outcome of almost every interaction between two or more particles
or objects is determined in part by the conservation of momentum. As far as is
known, whenever the conditions for momentum conservation have been satis-
fied, the law has never been violated.

% THE NATURE OF CONSERVATION LAWS

Physicists have found several conservation laws—statements that a quantity is
constant in nature—in addition to conservation of momentum. For example, we
study conservation of angular momentum, energy, and electric charge in later
chapters. Conservation laws are different in character from Newton’s laws of mo-
tion and gravity, but they are just as fundamental, useful, and important. For ex-
ample, the impulse-momentum form of Newton’s second law says that if you
apply a net force over an interval of time (an impulse), you cause a change in
an object’s momentum. Conservation of momentum says that if you don’t apply
an external force to a system, the total momentum of the system doesn’t change—



The Nature of Conservation Laws

momentum is conserved. That might sound like another way of saying the same
thing, but there are important differences. In particular, the impulse/momentum
form of Newton’s second law says that some quantities change in an interaction;
these changes are sometimes hard to measure. The principle of conservation of
momentum identifies quantities that don’t change in an interaction; these quan-
titites are easy to measure.

To understand better what we can learn from a conservation law, imagine
you are shooting a game of pool with a friend. You start out with 15 colored balls
and a cue ball and you take turns hitting the cue ball into the other balls, trying
to knock them into one of the six pockets. We impose a law of conservation of
pool balls: no balls may be created or destroyed, but all 16 balls must stay on the
table or in its pockets at all times.

After playing for 15 minutes, you count up the number of balls on the table
and see that there are 5 balls plus the cue ball. You can’t see any other balls, but
you know there are 10 balls in the table pockets. Why? Because conservation of
pool balls states 15 colored balls must be in the system at all times. You don’t
need to check each pocket on the table and count up the balls as long as you
know the conservation law applies. The conservation law does not tell you the
details of the game, such as the great shot you hit that sank 2 balls at once, but
the law does keep track of the general state of the system.

Conservation laws can provide useful information about a system. Near the
end of the game, your friend lines up a shot with only two colored balls left on
the table (Figure 6-5a). You turn away for a minute and hear the loud smack of

Slowly moving

pool ball LW

7

Stationary ®®

bool balls v Stationary Q
o cue ball

Initial
momentum

Cue ball O

ri(

FIGURE 6-5. (a) The cue ball and two colored balls remain on a pool table. Your friend
is about to shoot when you look away. (b) You hear the collision of the cue ball and
look back to see the nearly stationary cue ball, and one colored ball moving slowly to
the right. What happened to the other ball? (c) Conservation of colored balls tells you
that the missing ball must be in one of the pockets, while conservation of momentum
suggests that the ball was hit into the far left corner pocket, assuming that your friend
didn't execute a difficult bank shot (dotted line) into the near left corner pocket!

Path of
missing
pool ball

//\ Path of

possible
bank shot
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the cue ball hitting the colored balls. When you turn back to the table, the cue
ball is almost motionless on the table and one colored ball is rolling slowly to-
ward the far right corner pocket (Figure 6-5b). What happened to the other ball?
You can’t see it, but you know from conservation of pool balls that since it’s not
on the table, it must be in one of the pockets. But which one? Here conserva-
tion of momentum applies. Once your friend hit the cue ball, no forces were ex-
erted on the system of three balls. The cue ball started out fast, with a significant
amount of momentum. The conservation law says that this momentum is still in
the system: it can’t be created or destroyed. So the missing ball must have gained
momentum after being hit by the cue ball and must be in the far left corner
pocket (Figure 6-5¢). We examine the details of this transfer of momentum a lit-
tle later in this chapter, but you don’t have to calculate impulse or change of mo-
mentum to determine where the ball went. That’s the beauty of conservation
laws: you obtain information just from knowing that some quantity before an in-
teraction is unchanged after the interaction.

Physicists often rely on conservation laws to determine the behavior of ob-
jects they can’t observe directly. For example, they don’t have to actually see
atomic-scale particles to calculate forces and accelerations before and after a col-
lision. Conservation laws apply to those particles, so we can still calculate infor-
mation about them and about the interaction. It’s not magic and it’s not
guesswork, it’s simply applying known laws to a given situation.

Not all quantities in physics are conserved. There is no conservation of force
or conservation of velocity, for instance. But those quantities that are conserved,
such as momentum, angular momentum, energy, and electrical charge, are im-
portant properties to know about an object. Much current research in physics
aims at determining these properties for everything from subatomic particles to
astronomical objects.

3 THE COLLISION OF TWO OBJECTS

Consider the case of two pool balls—a cue ball with mass m2; and velocity v; trav-
eling to the right, and a colored ball with mass m, that is not moving before the
collision. Suppose further that after the collision, the cue ball comes to a stop
and the colored ball moves off to the right with velocity v, (Figure 6-6). (We are
still considering only one-dimensional motion along a line here. Not a typical
pool shot, perhaps, but simpler to analyze.) Then the law of conservation of mo-
mentum tells us, in symbols

Initial momentum = Final momentum
(ml X Vl) St (m2 X O) = (m1 X 0) + (}’)12 X Vz)

m
so that vy = (—1>v1
m

This result matches our intuition, because if the masses of the two balls are equal,
then the colored ball moves to the right with exactly the same velocity as the
cue ball had before the collision.

We can gain more insight into the meaning of momentum by considering an-
other example of a collision (Figure 6-7). Suppose that a speeding bullet (mass
my, velocity v;) and a powerful locomotive (mass m;, velocity v, in the opposite
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A\
- Vo = 0
‘_..b{ 1 * Before collision
, . P=(my x vq) + (m, x 0)
m m
! Z FIGURE 6-6. A cue ball with

y=0 mass my and velocity vq col-

Vo Atterenllision lides with a colored ball with
O @—* P=(my x 0) + (my x v5) mass my that is not moving
m my

before the collision. Momen-
tum is conserved.

direction) are approaching each other. The total momentum P of the system be-
fore impact is just

P = (my X v{) — (my X v,) = Total momentum before collision

. The minus sign in this expression represents the fact that the bullet and the train
are moving in opposite directions before the collision. Suppose, for the sake of
argument, that after the collision the bullet recoils and is moving in the same di-
rection as the train, but with velocity u;, while the train keeps moving forward
with velocity u, (where u, is not the same as u;). The new total momentum is

P = (my X uy) + (my X upy) = Total momentum after collision

Conservation of momentum tells us that the total momenta before and after the
collision have to be the same. Since the momentum of the bullet is reversed,
the momentum of the train has to decrease and the train has to slow down (al-
beit by a very small amount).

You can, in fact, think of the collision as a transfer of momentum from the
train to the bullet, with the train losing positive (say, rightward-directed) momen-
tum and the bullet gaining this positive momentum as it reverses direction. In this
case, the train with its larger mass has a momentum much larger than the bullet
has, so it does not slow down very much. On the other hand, even a small amount
of the train’s momentum, when transferred to the bullet, produces a very large
change in that object’s momentum (in this case, it reverses the bullet’s direction).

It’s important to keep in mind that the law of conservation of momentum
doesn’t say that momentum can never change. The law just says that momentum
won’t change unless an outside force is applied. If a soccer ball is rolling across
a field and a player kicks it, a force is applied to the ball as soon as the player’s
foot touches it. At that instant, the momentum of the ball changes, and that
change is reflected in its change of direction and speed.

Before collision After collision
P=(my x vy) — (my x V) P=(my x uy) + (my x up)

(a) (b)

FiGure 6-7. (a) A bullet (mass my, velocity v4) collides with a powerful locomotive
s (mass my, velocity v, in the opposite direction). (b) The train slows down a little bit,
but the bullet completely reverses direction; however, total momentum is conserved.
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You may not have realized it at the time, but you were
seeing the consequences of conservation of momentum
the last time you watched a fireworks display. Think about
arocket arching up and, just to make things simple, imag-
ine that the firework explodes just at the moment that the
rocket is stationary at the top of its path, at the instant
when its total momentum is zero. After the explosion,
brightly colored burning bits of material fly out in all di-
rections. Each of these pieces has a mass and a velocity,
so each piece has some momentum. Conservation of mo-
mentum, however, tells us that when we add up all the
momenta of the pieces right after the explosion, they
should cancel each other out and give a total momentum of zero. For example,
if there is a 1-gram piece moving to the right at 10 meters per second, there has
to be the equivalent of a 1-gram piece moving to the left at the same velocity.

The symmetrical patterns
of exploding fireworks
demonstrate conservation
of momentum.

Thus conservation of momentum gives fireworks their characteristic symmetri-

cal starburst pattern.

LOOKING DEEPER

Collisions
in Two Dimensions

Up to this point we have been talking about situations
in which colliding objects move in one dimension only.
However, conservation of momentum works in more
complicated cases as well. For example, consider two bil-
liard balls that make a glancing collision as shown (Fig-
ure 6-8). We can analyze this situation by recalling that
momentum, like velocity, is actually a vector quantity.

When the two billiard balls approach each other at
an oblique angle, their momenta can be represented by
vectors, as shown in Figure 6-8a. As we discussed in
Chapter 2, each of these vectors can be thought of as
the sum of two components, one in the x-direction and
one in the y-direction. These components are shown in
the figure. When momenta are represented in this way,
the conservation law can be stated

In the absence of external forces, momentum is
conserved independently in the x- and y-directions.

We can examine this idea by looking at two situations.

CASE 1 ® No external forces.

If the two billiard balls have velocities v, and v, before
the collision and u; and u, after the collision (Figure
6-8b), then the statement tells us that

Momentum in x-direction before collision
= Momentum in x-direction after collision

MV, — MVyy = MUy, — Milyy

and

Momentum in y-direction before collision
= Momentum in y-direction after collision

mvyy, — Mmvpy = —mityy + My,

CASE 2 m External force in one direction.
Another common situation occurs when an external
force such as gravity acts in one direction, but no ex-
ternal force acts in the other. In this case, momentum
is conserved in the direction in which no force acts, and
Newton’s second law describes the change in momen-
tum in the other direction.

In the example of the exploding fireworks display,
gravity is acting in the vertical y-direction and there is
no external force in the horizontal x-direction. Conse-
quently, momentum is conserved in the x-direction, so
that any piece of material moving to the left has to be
compensated by a piece of material moving to the right.
In the up-and-down y-direction, however, gravity acts
to pull the system back toward the ground, accelerat-
ing as it does so. What happens is shown in Figure 6-9.
If you add up all the momenta at any moment after the
explosion, they produce a vector that is exactly the same
as the vector that would describe the rocket had the ex-
plosion never occurred.



Momentum in x-direction
MVyyx— My,

Momentum in y-direction
mVly— mVZy

Before collision

After collision

Momentum in x-direction
muqiy— Mupy

Momentum in y-direction
—mU1y+ mUZy

FIGURE 6-8. Two billiard balls make a
glancing collision. Their momenta can be
represented by vectors. Momentum is
conserved in the x-direction and the
y-direction separately.

FIGURE 6-9. If you add up all
the momenta of individual frag-
ments at any moment after a
fireworks explosion, they pro-
duce a vector that is exactly the
same as the vector that would
describe the momentum of the
rocket had the explosion never
occurred.
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il ]

Physics in the Making

The Discovery of the Neutrino

Conservation of momentum played an important role in the discovery of a par-
ticle called a neutrino—a particle we discuss in more detail in Chapter 27. In the
early 1930s, physicists knew that one of the basic constituents of the nucleus of
the atom was a particle called the neutron. They also knew that neutrons out-
side of the nucleus, on their own, are unstable and fall apart (or decay) into other
particles. At the time, physicists could easily detect only particles that had elec-
tric charge, so what they saw in the laboratory was a single neutron decaying into
a proton (with a positive charge) and an electron (with a negative charge). The
problem was that some of the decays looked like the one shown in Figure 6-10a:
initially the neutron was sitting still, but the proton and electron came off in the
same direction.

Let’s analyze this situation from the point of view of momentum. Even if we
don’t know what forces act to cause the decay, it is clearly an internal reaction
within the neutron, so there are no external forces acting. Momentum must be
conserved.

The initial neutron is motionless, so the total momentum of the system is
zero. In the event shown in Figure 6-10a, however, the proton and electron both
have momentum directed to the right, and there is no way for the two individ-
ual momenta to cancel each other out. Physicists were therefore faced with a
choice: they could either give up the law of conservation of momentum, or they

(a) Observed:

Q

Neutron

Before decay

P=10
Q > After decay
BEstan P=(my,x v,) +(mgx ) #0
_ (> Ve
Electron

(b) Pauli's suggestion:

O

Neutron

Before decay

P=0
Q o After decay
v, = _
e —g Proton & (m? ;Vp) : ; mtax ve)
X =
Neutrino Ea g e e
Electron

FIGURE 6-10. (a) The decay of a stationary neutron occasionally displays a proton and
electron that come off moving in the same direction. (b) Conservation of momentum
requires that another particle must balance the momentum of the proton and electron.



Momentum depends on mass and velocity, so any time something moves, it has momentum. When you
hit a volleyball, you give it momentum; when you walk across a lawn you have momentum—even
moving your arm gives it momentum.

Momentum of
struck ball

Momentum of
moving arm

Momentum of
rising body

Momentum of
walking child -

could assume that another particle was emitted in the reaction, a particle they
could not detect, which was carrying momentum directed to the left. With some
reluctance, the German physicist Wolfgang Pauli took the latter route. He sug-
gested that there was a particle (eventually called the neutrino, or “little neutral
one”) that, because it had no electrical charge, was invisible to experimenters,
but that could balance the momentum of the electron and proton, as shown in
Figure 6-10b. The hypothetical particle also solved other problems that had been
encountered by experimenters.

For several decades, then, physicists accepted the existence of the unde-
tectable neutrino because it allowed them to hold onto central laws of nature
such as the conservation of momentum. When the neutrino was finally detected
in 1956, this faith in the laws of nature was amply rewarded. @
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THINKING MORE ABOUT

Momentum: Why Isaac Newton
Would Wear His Seat Belt

One of the authors (JT) knows a highway
patrolman who makes a point about auto
safety by saying, “I never pulled a dead man from
behind a seat belt.” Although some people do in-
deed die in car crashes while wearing seat belts,
there is no question that seat belts greatly improve
your chances of walking away from a crash. Given
what you know about momentum and impulse,
why should this be so?

Look at it this way: when you are sitting in a
car, your momentum is your mass multiplied by
the speed of the car. Call this quantity P. In a crash,
the speed of the car—and of you—is rapidly re-
duced to zero. Therefore, the change in your mo-
mentum during the crash is P—your momentum
before the crash minus your momentum after the
crash. The impulse-momentum relationship tells
us that a force must act to supply the impulse
needed to bring about this change.

Sanmary

The momentum of an object is defined as the product of
that object’s mass and its velocity. Like velocity, momentum
is a vector. In terms of momentum, Newton’s second law
says that the rate of change in the momentum of a system
is equal to the net force.

Impulse is defined as the product of the net force
and the time interval over which that force acts. Another
way of stating Newton’s second law, called the impulse—
momentum relationship, is to say that the change in mo-
mentum of a system is equal to the impulse applied to it.

Key Terms

conservation law Statement that a quantity is constant in
nature. (p. 124)

impulse The product of a force multiplied by the time over
which it acts. (p. 121)

impulse-momentum relationship Restatement of Newton’s
second law, in which impulse equals the change in
momentum. (p. 121)

If you’re not wearing a seat belt, you keep
moving forward when the car stops, and your mo-
tion stops when your head hits the steering wheel
or the windshield. Because these surfaces are hard,
the time of the impact is short—a fraction of a sec-
ond. Consequently, the force needed to stop you
must be large. In addition, this force is applied to
a small area of your skull, greatly increasing the
pressure. Such a large focused force can be deadly.

If you’re wearing a flexible seat belt, however,
a smaller force is applied over a longer time in-
terval to produce the same change in momentum.
What’s more, the broad, flat seat belt distributes
that force over a much larger area of your body.
The chances of injury are greatly reduced. This is
one reason why seat belts save lives.

Given the physics of this situation, should
states require that drivers and passengers wear
seat belts? Is such legislation an intrusion on per-
sonal freedom? In what other ways do scientific
principles influence our laws?

Other examples of momentum around us ap-
pear in Physics and Daily Life on page 131.

The total momentum of a system with several objects
is defined as the sum of the momenta of all of those objects.
Only external forces applied to a system can change its to-
tal momentum. Internal forces may change the momentum
of one part of a system, but these changes always cancel out
when they are added up over the entire system.

In the absence of a net external force, the total mo-
mentum of a system does not change. This statement, known
as the law of conservation of momentum, is one example of
a conservation law.

law of conservation of momentum Statement that if no
external forces act on a system, then the total momentum
of that system remains the same. (p. 124)

linear momentum Another term used for momentum (the
product of mass times velocity) when the object is
understood to move in a straight line. (p. 118)



momentum The product of an object’s mass and velocity.

K

(p. 118)

ey Equations

Momentum = mass X velocity

Impulse = change in momentum

Review

= net force X time (force is applied)

1. What is momentum?

Questions

1.

2.

4.

How is inertia related to linear momentum? Consider
Newton’s laws.

What does it mean to say that momentum is a vector quan-
tity? Give an example of this.

What is an impulse? How is it derived from Newton’s sec-
ond law F = ma?

Which produces the greater impulse, a large force acting
for a short time or a small force acting over a long time?
Explain.

What is meant by the total momentum of a system? Give
an example.

What effect do internally generated forces have on the to-
tal momentum of a system? Explain.

Can a system of multiple objects moving in different di-
rections have a total momentum of zero? How can this be?

Which has more momentum, an 18-wheel truck that is
parked on a street or a mosquito buzzing around your ears?

A large truck that is moving to the right collides head-on
with a stationary compact car. Which vehicle (if either) ex-
erts the larger force on the other? Which force imparts a
greater impulse? Assuming the collision forces are the only
forces acting on the vehicles during the collision, which ve-
hicle’s momentum changes more? Compare the direction
of the momentum change of the truck to the momentum
change of the car.

Two balls are moving in opposite directions as shown in
the figure. What is the direction of the total momentum of

the system?
Q 2 m/s

1 kg

1 m/s

2 kg

Questions 133

total momentum The sum of the momenta of all the objects
in a system. (p. 122)

10.
11.
12.

13.

14.

When adding up a system’s total momentum, do we need
to account for the direction of the individual particles that
comprise the system? How so?

What do scientists mean when they say something is
conserved?

What is the conservation of momentum?
Identify a physical quantity that is not conserved.

What happens when an external force is applied to a sys-
tem? Is momentum conserved?

What is meant by a collision in two dimensions? Give an
example.

In a two-dimensional collision, is momentum in the
x-dimension conserved? How about the y-dimension?

Two balls are moving in opposite directions as shown in
the figure. What is the direction of the total momentum of

the system?
a 1 m/s

1 kg

2 m/s

1 kg

. What is the direction of the total momentum of the system

of objects shown in the figure? Explain your answer.

3mls
1 kg
3 m/s y 3 m/s
1 kg 2 kg
1 kg

3 mls
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7.

8.

(b)

10.

11.

What is the direction of the total momentum of the system
of identical tennis balls shown in the figure? Explain your
answer.

5m/s 5m/s

10 m/s

Two identical billiard balls, A and B, collide head-on. Be-
fore the collision, A is moving and B is stationary. After
the collision, A is stationary and B is moving. Compare the
speed of A before the collision to the speed of B after the
collision. Explain how you reach your conclusion.

After collision
i >
A B

Which of the collisions in the figure are possible and which
are impossible? The objects have identical masses. (Hint:
Which collisions violate conservation of momentum?)

Before collision

Before collision After collision

O

v
O

If you throw a ball high in the air, its momentum is ap-
parently not conserved. First it moves up (upward mo-
mentum), then it stops (zero momentum), then it moves
down (downward momentum). How come its momentum
is not constant? Is there a system that includes a ball whose
momentum is constant?

Two identical eggs are dropped from a height of 10 meters.
One lands in the dirt and shatters. The other lands on a pil-
low and does not break. Compare the momentum change

12

13.

14

B

15.

16.

17.

18.

19

20.

21.

22.

23

of each egg after each lands. In terms of collision time and
forces, why does one egg break and the other does not?

Several years ago in New Orleans, a large ocean liner was
unable to stop in time and crashed into a riverwalk dock,
causing immense damage. Explain why a ship of such size
would have such difficulty stopping, and describe the col-
lision with the pier in terms of an impulse.

What are some reasons that you frequently see truck
turnouts on mountain highways? (A truck turnout is a level
or upward-sloping area alongside a steep downward high-
way where a truck can come to a stop and let its brakes
cool.) Would truck brakes have more of a tendency to fail
than passenger car brakes? Why? Consider momentum
and Newton’s laws.

Bungee jumpers use cords that are elastic. Explain in terms
of impulse why a metal cord is never used in place of the
elastic cord, even though it might be less likely to break.
Explain this in terms of force, momentum, and impulse.

Why are people who have to jump from any appreciable
height, such as parachuters or stunt people, taught to land
with their knees bent and to roll on impact?

What is the purpose of a good ‘follow-through” when swing-
ing a golf club or a baseball bat?

Explain the theory behind air bags in cars. What are the
advantages and disadvantages of their use? Why are
airbags on occasion lethal to the occupant?

Explain to yourself in some detail just how conservation
of momentum may be used to understand how a rocket
moves. Can the motion of a rocket be completely explained
by this conservation law? Why?

Conservation of momentum is really a consequence of
Newton’s second law. Explain the connection.

When new comets enter the solar system and move toward
the Sun, they often display erratic motion, moving first one
way and then another as large chunks of material evapo-
rate in the heat. Use the concept of momentum to explain
this behavior.

Modern fireworks displays include dramatic explosions in
which flares perform spiral, twisting, or wiggling motions.
How might these distinctive motions be produced?

While playing a game of pool, you line up a shot, strike the
cue ball, and watch as it knocks the 9 ball into the corner
pocket. How was momentum transferred in this situation?
What happened to the momentum when the 9 ball entered
the pocket? Was momentum conserved? If not, why not?

Car accidents are dangerous because the car may experi-
ence a very high acceleration (stopping fast in a head-on
collision, for example). Consider a specific accident where
a car slams into a wall and comes to a complete stop. Does
the impulse imparted to a passenger depend on whether
or not the passenger is wearing a seat belt? How come a
seat belt makes the passenger safer?
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Large and Small Momenta p=mxvy
EXAMPLE
L 6-1 /) Compare the momentum of a baseball (mass 0.3 kg) with = 0.3 kg X 30 m/s
the momentum of a blue whale (mass 150,000 kg). Sup- =9 kg-m/s
pose the baseball is moving to the right at the speed of a .
good fastball (30 m/s). How fast would the whale have to ~ We are told that this is equal to the momentum of the
be going to have the same momentum as the baseball? whale. We also know the whale’s mass and we want to find
its velocity. We can rearrange the definition of momentum
SOLUTION: Momentum is defined as to solve for the speed v.
p=mXvy
p=my
If the whale were swimming at the same speed as the base-
; P
ball is thrown, the whale would have much more momen- y=—
tum. However, an object of large mass moving slowly can 4y
i 2 9 kg-m/s
bave the same momentum as an object of small mass mov' _ g - = 0.000006 m/s
ing quickly. How slowly would the whale have to move? 1.5 X 10° kg
Let’s take a look at the numbers.
We can first find the momentum of the baseball by  This is a very slow speed. It would take almost 50 hours
substituting the numbers for mass and velocity. for the whale to move 1 meter. ®
A Long Drive tee. Therefore, the change in momentum is equal to the fi-
EXAMPLE

\6-2 /' What is the total impulse imparted to a 10-g golf ball that

flies off the tee at 40 m/s (about 90 miles per hour)? Strobe
photographs have indicated that in a golf drive, the club
stays in contact with the ball for only about 1 millisecond
(=0.001 s). Assuming this time interval occurs for the
given golf drive, how much force does the golfer exert?

REASONING: First we find the impulse by the impulse—
momentum relationship. Then we use the results and the
given time interval to calculate the force from the defini-
tion of impulse.

SOLUTION: By the impulse-momentum relationship, im-
pulse equals the change in momentum, A(mv). In a golf
drive the mass of the golf ball doesn’t change, but its ve-
locity increases, in this case from 0 to 40 m/s. The initial
momentum of the golf ball is 0, because it is at rest on the

nal momentum.

Impulse = Change in momentum
A(mv) = m X Ay
=10 g X 40 m/s
= 0.4 kg-m/s

Once we know the impulse, we can use its definition to
determine the net force applied to the ball for the given
time interval.
Impulse = F X At

Impulse

F=—""-
At
_ 0.4 kg-m/s
0.001 s
= 400 kg-m/s> = 400 N @

EXAMPLE

\6-3,

Nudging a Cruise Ship
1. What s the impulse imparted to a cruise ship with mass
107 kg and velocity 5 m/s that is brought to rest by a
tugboat?
SOLUTION: Here the final momentum is 0, because the
ship is brought to rest. The change in momentum thus
equals the initial momentum.
m X v=10"kg X 5m/s
=35 X% 107 kg-m/s
2. If it takes 10 minutes to stop the ship, what is the av-
erage force exerted by the tugboat?
SOLUTION: First we have to convert units from minutes
to seconds.
10 minutes = 600 seconds

From the impulse-momentum relationship, the change
in momentum is equal to the impulse. This means that

Impulse = F X At = change in momentum
FX600s =5 X107 kg-m/s
~ 5x107 kg-m/s
600 s
= 8.3 X 10° kg-m/s?
=83 X 10°N

or

This force is modest compared to the weight of the
ship. It corresponds to the weight of an object with a
mass of about 80,000 kg, which is less than 1% of the
ship’s mass. ®
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Problems

1. Calculate the momenta of the following:

a. A 200-gram rifle bullet traveling 300 m/s.

b. A 1000-kg automobile traveling 0.1 m/s (a few miles per

hour).
c. A 70-kg person runningl0 m/s (a fast sprint).
d. A 10,000-kg truck traveling 0.01 m/s (a slow roll).

2. Allison (30 kg) is coasting in her wagon (10 kg) at a con-
stant velocity of 5 m/s. She passes her mother, who drops

a bag of toys (5 kg) into the wagon.

a. Do you expect the wagon to speed up or slow down?

Why?

b. What is the initial momentum of Allison and the wagon

before her mother drops the toys in?

c. What is the final momentum of Allison, the wagon, and

the toys?

d. What is the final speed of the wagon after Allison’s

mother drops the toys in?

3. What is the total momentum of each of the following

systems?

a. Two 1-kg balls move away from each other; one travels

5 m/s to the right, the other 5 m/s to the left.

b. Two balls move away from each other, both traveling
at 7 meters per second. One has a mass of 2 kg and the

other has a mass of 3 kg.

c. Two 1000-kg cars drive east; the first moves at 20 m/s,

the second at 40 m/s.

d. One of the 1000-kg cars moves west at 40 m/s, while the
second moves east from the same starting point at a

constant velocity of 30 m/s.

4. A 20-metric-ton train moves south at 50 m/s.

a. At what speed must it travel to have twice its original

momentum?

b. At what speed must it travel to have a momentum of

500,000 kg-m/s?

c. If there were a speed limit for this train as it traveled
through a city, but not a weight limit, what mass in kilo-
grams must be added to the train to slow it down to
20 m/s, while at the same time keeping the momentum

the same as in part b?

5. A. Calculate the impulse imparted to the object in the fol-

lowing collisions.

a. A 0.5-kg hockey puck moving at 35 m/s hits a straw

bale, stopping in 1 second.

b. A T-ball with a mass of 0.2 kg travels in the air at
15 m/s until it is stopped in the glove of a shortstop

over a period of 0.1 seconds.

c. A 12,000-kg tank moving at 4 m/s is brought to a
halt in 2 seconds by a reinforced-steel tank barrier.

10.

B. What is the average net force exerted by these objects
on the objects they collide with?

C. Which is more important in determining the amount of
damage an object sustains in a collision: the total mo-
mentum change (impulse) or the momentum change
per unit time? Is the total area over which this force is
applied important in determining how much damage
is done?

. A racing car with a mass of 1400 kg hits a slick spot and

crashes head-on into a concrete wall at 90 km/hour, com-
ing to a halt in 0.8 s. An ambulance weighing 3000 kg comes
racing to the rescue, hits the same slick spot, and then col-
lides with a padded part of the wall at 80 km/hr, coming to
a halt in 2 seconds.

a. What is the impulse exerted on each vehicle?

b. What was the force exerted by each vehicle on the wall?
What was the force exerted by the wall on each of the
vehicles?

c. What was the deceleration of each vehicle, from the
time it contacted the wall to the time it completely
stopped?

. InProblem 6 in Chapter 4, you were asked to solve the fol-

lowing problem using the knowledge of Newton’s laws that
you had accumulated up to that point.

Margie (45 kg) and Bill (65 kg), both with brand new
roller blades, are at rest facing each other in the parking
lot. They push off each other and move in opposite direc-
tions, Margie moving at a constant speed of 14 ft/s. At
what speed is Bill moving?

a. Use what you have now learned about momentum to
answer this problem in a different way.

b. Which method was easier for you to use to solve this
problem, the Chapter 4 method or this one? How do
the approaches compare? Are they really that differ-
ent? Explain.

. You are ice sailing in a boat on a very large, perfectly flat,

piece of the Arctic. All of a sudden the wind dies and you
cannot steer, but you have a boatload of frozen oranges
that you have brought with you to eat. How can you try to
stop yourself before your ice boat, heading for a deep
crevice, goes over the edge? Use conservation of momen-
tum to provide a solution.

. Which object has a greater momentum, a 0.1-kg bullet trav-

eling at 300 m/s or a 3000-kg truck moving at 0.01 m/s?

What is the total momentum of a two-particle system com-
posed of a 1000-kg car moving east at 50 m/s and a second
1000-kg car moving west at 25 m/s?
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11. Tony (60 kg) coasts on his bicycle (10 kg) at a constant b. What is the final momentum of the system immediately
speed of 5 m/s, carrying a 5-kg pack. Tony throws his pack after the pack leaves Tony’s hand?
forward, in the direction of his motion, at 5m/s relative to c. Is there a change in the speed of Tony’s bicycle? If so,
the speed of the bicycle just before the throw. what is the new speed?

a. What is the initial momentum of the system (Tony, the
bicycle, and the pack)?

Investigations

1. The next time you are at an amusement park, go to the any others that you can think of. Has momentum been more
bumper cars. Observe what occurs in various collisions. What important at different times? What types of trade-offs were
happens when a car occupied by a large heavy person hits involved in the design and manufacture of these machines?

a car with a very small person inside? What happens when g
cars with people of equal mass collide? Also, look at the ef-
fects of the angles of the collisions. Are your observations
consistent with what you learned in this chapter?

. To some physicists, particularly in the nineteenth century,
conservation laws have represented more than just useful
descriptions of nature. These scientists have seen a profound
esthetic beauty and mathematical simplicity in such state-

2. Go to a pool hall or to a friend’s house where there is a pool ments. James Prescott Joule, who helped to establish the law
table. Set up different shots and observe whether momen- of conservation of energy (see Chapter 12), said, “Nothing
tum is conserved in these collisions. Ignore the various spins is destroyed, nothing is ever lost, but the entire machinery,
that may be applied to these balls as you try to further un- complicated as it is, works smoothly and harmoniously. . . .
derstand the nature of linear momentum and collisions. (The Everything may appear complicated in the apparent confu-
effect of spin is covered in the next chapter.) sion and intricacy of an almost endless variety of causes, ef-

fects, conversions, and arrangements, yet is the most perfect
regularity preserved—the whole being governed by the sov-
ereign will of God.” Imagine a universe in which momen-
tum is not conserved and describe phenomena that might
seem strange or different from our everyday experience. Is
such a universe plausible? Is it less esthetic than our own?

3. Look up the masses and normal speeds for the balls used in
several of your favorite sports. How much momentum do
the balls typically have? What kind of impulses result when
they are hit by or in turn collide with different solid objects
such as bats, clubs, or human flesh?

4. Using the balls you studied in 3 above, design an experiment 7
to measure the precise momentum of the different balls,
along with the impulses generated in their normal use. De-
tail the methods that you could use to do this.

. Numerous serious scientific studies have been devoted to
the threat posed to the Earth by collisions with asteroids. (It
was just such a collision 65 million years ago that is believed
to have caused the extinction of the dinosaurs.) Asteroids

5. Research the history of weaponry. Examine the role mo- can be several kilometers wide traveling at speeds of hun-
mentum and impulse have played in the design and devel- dreds of meters per second. Given what you know about
opment of military machines and weaponry. Examine such momentum, what strategies do you think might be employed
objects as catapults, battering rams, cannonballs, tanks, and to save the Earth if a collision were found to be imminent?

" WWW Resources

See the Physics Matters home page at www.wiley.com/college/trefil for valuable web links.

1. zebu.uoregon.edu/nsf/mo.html Animated Java simulation laboratories on the conservation of linear momentum from the

Department of Physics, University of Oregon.

.

2. www.physicsclassroom.com/mmedia/momentum/cba.html A tutorial on impulse, momentum, and collisions from
physicsclassroom.com including many animated problems and applets.

3. www.nhtsa.dot.gov/index.html Home of the US National Highway Traffic Safety Administration containing many resources
regarding auto crash safety and testing.



