
2 The Language
of Science

K E Y  I D E A

Mathematics is the
universal language o f
science.

PHYSICS A R O U N D  US .  .  .  M a t h  in  t h e  Kitchen

H a v e  you ever baked a loaf of bread from
scratch? There's something special about the
taste and smell of bread fresh from the oven.

It does take some effort, however, and you have to
follow the directions carefully.

In one popular recipe, you start by combining
yeast and a tablespoon of sugar (at 75°F) with z cup
of water (at 85°F)—a mixture that activates the yeast.
After 10 minutes, you add other ingredients: 1 beaten
egg, 8 cups of flour, and so forth, to make the dough.
After kneading and shaping the dough, you place it

into a preheated oven (400°F) for 15 minutes, reduce
the temperature to 375°F, and then bake for an addi-
tional 25 minutes.

Even the simplest recipe for  bread involves
dozens of numbers—times, temperatures, weights, and
volumes—all of which are essential to the task. With-
out these exact quantitative instructions, baking bread
would be a messy, frustrating business.

In science, as in cooking and countless other as-
pects of our lives, mathematics is the essential language
for communicating ideas with accuracy and precision.
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24 CHAPTER 2 The Language of Science

)  Q U A N T I F Y I N G  N AT U R E

There are many ways to
describe a tree, from
focusing on its shape to a
discussion of the complex
chemistry that goes on in
its leaves.

Take a stroll outside and look carefully at a favorite tree. Think about how you
might describe the tree in as much detail as possible so that a distant friend could
envision exactly what you see and distinguish that tree from all others.

A cursory description would note the rough brown bark, branching limbs,
and canopy of green leaves, but that description would
do little to distinguish your tree from most others. You
might use adjectives such as "lofty," "graceful," or
"stately" to convey an overall impression of the tree.
Better yet, you could identify the exact kind of tree
and specify its stage of growth—a sugar maple at the
peak of autumn color, for example. However, even
then your friend would have relatively little to go on.

Giving exact dimensions of the tree—its height,
the distance spanned by its branches, or the diameter
of the trunk—would enhance your description. You
could document the shape and size of leaves, the tex-
ture of the bark, the angles and spacing of the branch-
ing limbs, and the tree's approximate age. You could
even estimate the number of board feet of lumber the
tree could produce.

To provide more detail, you might examine the tree for moss and insects liv-
ing on the trunk and for evidence of disease on the leaves. The more detailed
your description, the more varied the vocabulary you would need to command
and the more precise your measurements of the tree's many parts would have
to be. Photographs and other illustrations might be included to supplement your
written report. Ultimately, you might even probe the tree at the microscopic level,
examining the cells and molecules that give the tree its unique characteristics.

For each different kind of description of the tree, there is an appropriate lan-
guage. For some uses, words might be sufficient. For example, if you were doing
a census of a particular group of trees, a simple "oak tree" might be enough to
get the job done. For other uses, such as including an image of the tree in a dec-
orating scheme, you might want a picture or a geometrical shape. For still oth-
ers, such as a quantitative description of the tree's energy balance or its economic
value as lumber, you would need to use numbers. All of these are useful de-
scriptions of the tree, but each is appropriate for answering a different question
about the tree.

Scientists constantly grapple with the challenge of describing our world. Their
solution to the problem invariably involves developing a complex vocabulary,
coupled with appropriate mathematical expressions. In the words of Galileo
Galilei, "The book [of science] is written in the mathematical language . . . with-
out whose help it is humanly impossible to comprehend a single word of it, and
without which one wanders in vain through a dark labyrinth."

Language a n d  Physics
What makes a language useful? First and foremost, a language must be able to
communicate a wide range of expression without ambiguity or confusion. In most
day-to-day activities, two or three thousand words suffice for basic communica-
tion. However, as soon as you deal with a complex system, such as an automo-
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bile, the vocabulary increases dramatically. Think about the last time you had to
have your car repaired, for example. The repair shop first had to know which of
the hundreds of makes, models, years, and engine types you own. The mechanic
then had to identify which of the thousand or so automobile parts was
defective. Just to describe the problem, the mechanic has to master thou-
sands of words—the specialized vocabulary of automobiles.

A catalog of parts, alone, however, is insufficient to describe your au-
tomobile and how it works. Other statements are needed to describe the
car's operation. An engine must idle at a prescribed speed, for example,
and the tires must be inflated to a safe pressure. All of these conditions
and hundreds more are measured by various gauges and sensors, which
are critical to the operation of your car. Numbers, not words, best describe
these quantities. Indeed, almost everything to do with the mechanics of
driving—speed, acceleration, distance, time—is expressed by numbers.

The same situation applies to many other things we do in everyday
life. To prepare your meals you must know the complex vocabulary of
food, including numerous varieties of fruits and vegetables, dozens of cuts
of meat and types of seafood, shelves of herbs and spices, and so on. But any
cook needs numbers—quantifiable information—as well, to communicate the de-
tails of a recipe: how much, how hot, and how long? Similarly, virtually all sports
have evolved specialized vocabularies, and they often employ sophisticated
mathematical scales to measure performance: earned run average (baseball),
third down efficiency (football), serving percentage (tennis), and a host of other
parameters that enliven sports reporting.

Communication in science poses special challenges because, like your auto-
mobile, natural systems are complex in design and they operate according to
strict quantitative guidelines. And, like cooking and sports, science involves com-
plex procedures that must be documented with precision so that others can try
the activity for themselves.

Learning the Language of  Science
Memorizing complex vocabulary is an integral part of learning to do science.
Doctors and medical researchers, for example, must be able to refer to thousands
of different bones, muscles, nerves, and other anatomical features. Chemists must
have command of the names of more than a hundred elements and countless
chemical compounds. And physicists must master the intricate vocabulary of me-
chanics, electromagnetism, thermodynamics, and particle physics. Without this de-
tailed vocabulary, communication between specialists would be all but impossible.

Specialized vocabulary is primarily for the experts. You don't have to learn
all the mechanic's jargon to know if your car is running properly; however, if you
decide to become a mechanic yourself, you'll need a lot of specialized training,
which includes the vocabulary. Similarly, you don't have to be a master chef to
enjoy good food or be a star athlete to appreciate sports. The same is true of
science—you can appreciate science without having to become a scientist and
mastering its specialized vocabulary.

0  DESCRIBING T H E  PHYSICAL W O R L D

The challenge of describing the vast and complex universe may be divided
roughly into two tasks. First, scientists must describe all kinds of physical objects,

To be an automobile
mechanic, you have to learn
a specialized vocabulary
that you don't need just to
run a car.
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from atoms to stars. Then they must document how these objects interact and
change over time. Both of these jobs rely, in large measure, on mathematics.

Describing an Object: What Is It?
We can't understand how the universe works unless we know its components.
For hundreds of years, astronomers plotted the position of every visible star,
while geographers mapped the features of our globe. Naturalists traveled to the
ends of the Earth collecting every possible rock, shell, flower, and other curio for
their museum collections. In our own century, discoveries of vast numbers of
galaxies, disease-causing viruses, and a complex zoo of subatomic particles have
transformed our understanding of the universe.

Describing new objects requires the ability to identify enough features that
distinguish one object from all others. To a certain extent, these descriptions rely
on words, which is why the vocabulary of science has become so complex. For ex-
ample, you might describe a rock as rose-pink, fine-grained, silica-rich, and intru-
sive. However, eventually such a description has to incorporate numbers for added
precision. What is the average size of the grains? How much silica is contained in
the rock? What are the light-absorbing properties that give the rock a pink color?

Scalars and Vectors
All of the descriptions we've discussed so far can be expressed as a single
number—you buy one gallon of paint, or you drive 10 miles to work. Any quan-
tity that can be expressed as a single number is called a scalar. Scalars are cru-
cial to the description of the physical world. As a consumer you are surrounded
by scalars: the wattage of a light bulb, the octane rating of gasoline, the efficiency
of appliances, and the voltage of your car's battery. You pay for coffee by the
pound, fabric by the yard, milk by the gallon, and electricity by the kilowatt-hour.
In science we measure the size of microbes, the mass of stars, the density of crys-
tals, and the temperature of our bodies. We will even find that the colors of light
may be represented as a scalar quantity (see Chapter 19).

However, sometimes you can't give a description in terms of a single num-
ber. If you were giving a friend instructions to your favorite restaurant, for ex-
ample, you might say something like, "Go north 3 miles on Main Street." Here
you have to give a scalar (3 miles) and some additional information (in this case,
the direction north). Similarly, physicists describe the velocity of an object in
terms of both its speed and direction. When a mathematical quantity, such
as velocity, requires two numbers in its definition—both a magnitude and a
direction—it is called a vector.

Vector Addition
Physicists often have to calculate the sum of two or more vectors to analyze real-
world problems. The easiest situation to analyze occurs when two vectors lie along
the same line. For example, a rower trying to move against a current will find his
actual velocity (speed and direction) determined by the sum of two vectors. One
of these vectors is the velocity the rower would achieve if he were rowing on still
water; the other is the velocity of the current. The sum of the two vectors in this
case is just the difference between the two velocities. If, for example, the rower
could achieve 10 km/h in still water and the current is against him at 2 km/h,
then his net velocity is (10 — 2) = 8 km/h.
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Vectors and the
Crash of the
Stardust
On August 2, 1947, a British South American Airways
flight, the Stardust, from Buenos Aires, Argentina, to
Santiago, Chile, crashed into the high Andes Mountains,
killing six passengers and three crew. They had en-
countered heavy cloud cover, but the experienced crew
had made the routine flight many times before—fly at
18,000 feet for 3 hours, ascend to 26,000 feet to avoid
the treacherous spine of the Andes, and then descend
to Santiago near the Pacific Coast. But on this flight
they flew straight into the mountains. What happened?

Fifty years after the mysterious accident, a team of
scientists visited the crash site and discovered its cause:
the ill-fated passengers and crew were victims of un-

usually high winds. On that fateful day the Stardust, a
Lancaster Mark II I  aircraft, flew west at 300 miles per
hour—a speed that made it easy to calculate a flight
path. But the crew didn't realize that they were flying
straight into an unusually strong jet stream—a 100-
mile-per-hour wind blowing to the east.

A plane's net speed (its ground speed) is the sum
of two separate speeds. The first is the speed of the plane
in still air, while the second is the wind speed. If  the
wind blows in the same direction as the plane's flight,
it adds to the plane's speed in still air. But if the wind
is opposite to the direction of the plane, it lessens the
plane's speed. The Stardust's actual ground speed was
the combination of two vectors: 300 miles per hour west
plus 100 miles per hour east. The vector sum is only
200 miles per hour west—much slower than the crew
thought. Thus the plane had not traveled as far west as
the crew thought it had, and they descended too soon.

Today, meteorologists constantly monitor the shift-
ing jet streams of Earth's upper atmosphere, and vec-
tor addition of wind velocity and plane velocity is a
critical part of every flight plan.

. D e v e l o p  Your Intu i t ion:  Going w i t h  t h e  F lowS 4
; W h a t  if the rower on page 26 is moving with the current instead of

against it? In this case, the rower's velocity is in the same direction
as the current. The current increases the rower's speed, so he moves at a speed
of (10 + 2) = 12 km/h. When we add two vectors along the same line, the re-
sult is the sum of their magnitudes if they are in the same direction and the
difference between their magnitudes if they are in the opposite direction.

A more complicated situation arises when the two vec-
tors do not lie along the same line. In this case, the easi-
est way to add vectors is to use a graph (Figure 2-1). Each
vector can be represented as an arrow on an x-y plot. For
example, a plane flying west 300 miles per hour would ap-
pear as an arrow pointing to the left with its tail at the ori-
gin (0,0) and a length of 300. If there is a crosswind of 300
miles per hour, we would find the actual velocity of the
airplane by connecting the tail of the vector representing
the crosswind to the head of the vector representing the
airplane's velocity in still air. The sum of the two vectors
is a new arrow that extends from the origin point to the
head of the second vector, as shown in Figure 2-1.

Vector addition is a lot like giving directions to a friend. "Go three blocks
north on Main Street, turn right on Maple, and it's the fourth house on the left."
Do you recognize the three vectors described by these instructions?

Vector 1 = 300
miles/hour

Vector 3 = Vector 1 + Vector 2

(0, 0)

FIGURE 2-1. Vector graph of
the velocity of a plane; addi-
tion of two vectors.
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Vector 2 =
400 miles east

+
50 miles north

Sum = 100 miles north

(0, 0)
Vector 1 =

400 miles west
+

50 miles north

FIGURE 2-2.  Vector addition for the path of a plane in
a cross wind.

Y

y-component
of A

-*,

Vector A

x-component of A X

FIGURE 2-3.  Any vector can be decomposed
into two perpendicular vectors.

Add ing  Vectors
A plane flies due west at 400 miles per hour for 1 hour, and then flies back due
east at the same speed for another hour. Meanwhile, a steady 50-mile-per-hour
wind blows from the south. Where does the plane end up relative to its starting
position?

SOLUTION: Intuitively, we know that a wind blowing from the south will push the
plane toward the north. Since the plane's flight plan is straight east and west,
with no intentional veering off to the north or south, we expect the plane will
wind up somewhere north of its intended flight path.

To work out the solution exactly, we consider this as a problem of vector ad-
dition involving three vectors. During the plane's 2-hour flight, the west leg of
400 miles exactly cancels the east leg of 400 miles. But the steady 50-mile-per-
hour southerly wind acts for 2 hours, shifting the plane's position 100 miles to
the north. Therefore, as shown in Figure 2-2, the plane winds up 100 miles due
north of its starting position. •

Vector Decomposition Just as vectors can be added together, so too can one vec-
tor be broken down into two or more component vectors. In many physical sit-
uations, it's useful to decompose a vector into two parts at right angles to each
other. Any vector on an x-y graph, for example, can be decomposed into one vec-
tor parallel to the x axis plus a second vector parallel to the y axis (Figure 2-3).
This property of vectors will become especially useful when we analyze the mo-
mentum of a system (Chapter 6).

0  EQUATIONS: THE DYNAMICS
OF THE PHYSICAL WORLD

If scientists just described objects in the universe, science would seem pretty bor-
ing. What makes science fascinating and useful is that systems change. Science is
a search to understand and predict these changes—the dynamics of our physical
world.
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0 1.0000
100 1.0060
200 1.0125
300 1.0183
400 1.0240

Change can be described in words, in tables of numbers, or visually through
the use of graphs. Of special importance are equations, which define a precise
mathematical relationship among two or more measurements. Let's look at an
example to see how the same physical behavior can be described in these dif-
ferent ways.

As you will see in Chapter 11, a bar of iron expands when heated. A re-
searcher might carefully measure the length of a 1-meter iron bar at a series of
temperatures and prepare a table like Table 2-1. We see a systematic trend in
these data; both temperature and length increase. These data can be described
in several ways.

1. We can describe what happens to the iron bar in words:
When we heat a 1-meter iron bar, it gets longer.

2. We can express this idea as an equation with words:
The length of the bar equals the original 1-meter length plus a constant times
the change in temperature.

3. We can express this idea as an equation in symbols and numbers (approximately):
L = 1 + (0.00006 x AT)

where L is the length and AT is the change in temperature. (Note that A, the
capital Greek letter delta, is often used in physics to denote a change in some
quantity. It is not used by itself, but always with the symbol for that
changing quantity. So AT denotes a change in temperature, AL is a
change in length, and so on. Note also that the number 0.00006 comes
from dividing the increase in length given in Table 2-1 by the corre-
sponding change in temperature; this is the change in length per
1-degree change in temperature.)

4. Finally, the data might be displayed in graphical form, as a plot of tem-
perature versus length (Figure 2-4).

Similar relationships are found in all scientific literature. Researchers
graphically document changes in the volume of  a gas with pressure,
changes in the distance objects fall with time, changes in the growth rate
of bacteria with concentration of nutrients, and countless other trends.

The example of the expanding iron bar illustrates why scientists use the lan-
guage of mathematics. Table 2-1 certainly represents the data, though in a mod-
ern experiment that list of numbers could easily run to thousands or even millions

I M M  Thermal Expansion
Temperature (°C)

of an Iron Bar
Length (meters)

E

1.03

1.02

1.01

Blacksmith with a hot iron
bar.

10 100  200 300 400 500
Temperature (°C)

FIGURE 2-4. A graph of
temperature versus the
length of an iron bar illus-
trates how two scalar
properties are related.



3 0  CHAPTER 2 T h e  Language of Science

of entries. All of that information can be packaged into a one-line equation. Thus,
the use of mathematics allows us to express the results of experiments in a highly
compressed and convenient form.

As we shall see later, equations have the added advantage of providing us
with the best way to make predictions about the behavior of our surroundings.
In addition, they transcend national barriers in that they have exactly the same
meaning all over the world.

Develop Your In tu i t ion:  Fuel  Eff iciency
I. 4
I, . 4;  r  : -. . , : , How would you describe the gas efficiency of your automobile? A
44:10.' colloquial answer might be, "I get pretty good mileage, especially on

interstate highways." Most people would accept that answer, but it wouldn't
be very useful in trying to compare two different cars.

To give a more accurate answer, you could keep exact records of your
car's mileage and the amount of gas purchased each time you fill up the tank.
By dividing the total miles driven by the number of gallons purchased, you
could calculate:

Miles per gallon = T o t a l  miles driven
Gallons of gas purchased

Then, you could reply with a scalar quantity, "I get about 30 miles per gallon."
Your answer could be even more precise if you record additional notes.

What was the brand and grade of fuel? Was the driving between each fill-up
in the city or on high-speed roads? Did you use the air conditioner? Did you
recently have an oil change? Were the tires properly inflated? What were the
weather and road conditions? With sufficiently detailed records you might be
able to say, "My car, when properly serviced and fueled with regular unleaded
gas, averages 33.7 miles per gallon when traveling 55 miles per hour on level,
dry interstate highways, and approximately 25.5 miles per gallon in city traf-
fic. The use of the air conditioner reduces these values by about 2.5 miles per
gallon."

Automobile manufacturers, who must document the fuel efficiency of their
vehicles, carry this process a step further by running carefully controlled
mileage experiments on dozens of cars in special laboratories. There, engineers
develop graphs and equations that relate fuel consumption to numerous other
variables. Many of these tests are now mandated by the Environmental Pro-
tection Agency to provide consumers with an accurate measure of each brand's
fuel efficiency.

Modeling the World
Scientists have devised many ways to describe the natural world. As shown in
the previous example of the expanding iron bar, the behavior of a physical sys-
tem may be documented in words, tables of numbers, or graphs. But no descrip-
tion is more compact and efficient than an equation. A brief survey will help you
to visualize the everyday reality underlying four common types of equations used
in this book: direct, inverse, power law, and inverse square. These equations may
be used to describe all manner of natural phenomena.
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Price (dollars)
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0 1  2  3  4  5
Weight (pounds)

(a)
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(b)

FIGURE 2-5. (a) A graph of a direct relationship between price of fruit and its weight.
(b) The price per pound can be treated as a constant of proportionality between
weight and cost.

1. Direct Relationships The simplest equations consist of a direct relationship
between two variables, A and B, in the form:

A = k x B

where k is called a "constant of proportionality." You use a direct relation-
ship every time you buy gas by the gallon or food by the pound:

Cost = Price per pound X Weight

In this case, two variables, the weight and the cost, are related by a constant
of proportionality called the price per pound.

In a direct relationship the two variables change together: if weight dou-
bles, so must the cost; if weight triples, so does the cost. We say that the cost
is proportional to the weight. The graph of such a relationship is a straight
line (Figure 2-5). In subsequent chapters we will find many direct relation-
ships between pairs of variables, including:

Acceleration is proportional to force (Chapter 4).
Electric power is proportional to electric current (Chapter 18).
Wave frequency is proportional to wave velocity (Chapter 14).

2. Inverse Relationships In many everyday situations, one variable increases
as another decreases, a situation called an inverse relationship:

A = B

where k is a constant. For example, consider an assembly line at which work-
ers who work at different speeds produce automobile parts. The shorter the
time, t, it takes for a worker to produce one part, the greater the number, N,
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80
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0
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Minutes per piece

(a)

Number of pieces per hour
= 60/minutes per piece

(b)

FIGURE 2-6. (a) A graph of an inverse relationship between the time it takes a worker
to assemble an item and the worker's hourly output. The shorter the assembly time
per item, the greater the hourly output. (b) An auto assembly line.

of cars produced per hour (Figure 2-6). We say that the number of cars pro-
duced in a given time period is inversely proportional to the production time:

Output of cars = Production time per car
kor N =  —t

Constant

Think about the behavior of the two variables, production time and out-
put in this case. If you make an automobile part in half the time of a fellow
worker, you will produce twice as many parts in any given time period. If you
produce a part in a third of the time, you'll produce three times as many, and
so forth. Inverse relationships thus lead to the distinctive kind of curving
graph illustrated in Figure 2-6. We will encounter many examples of such in-
verse relationships, such as:
For a given force, acceleration is inversely proportional to the mass being
accelerated (Chapter 4).
The wavelength of light is inversely proportional to the frequency of light
(Chapter 19).

3. Power Law Relationships You may recall from a geometry class the equa-
tion that defines the area of a square, A, in terms of the edge length, L:

A = L X L

A = L2
which can be rewritten as:

Area is said to be equal to length squared (Figure 2-7a and b). Squared re-
lationships are common in our daily lives. For example, in Chapter 3 we see
that a dropped object falls a distance that is proportional to the time of fall
squared.
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FIGURE 2-7. (a) Diagram of a square grid; (b) graph of the squared relationship be-
tween the area and edge length of a square. (c) Diagram of stacked cubes; (d) graph
of the cubed relationship of volume. An object 10 cm on a side holds 10 x 10 X 10 =
1000 cm3 or 1 liter, while an object 1 meter on a side holds 1000 liters.

A similar kind of relationship is found between the volume of a cube, V,
and its edge length, L:

V = L X L X L
or, in mathematical notation:

V = L3
Note that volume, which is the amount of space an object occupies, is mea-
sured in units of distance cubed, such as cubic meters (Figure 2-7c and d).
Many systems of measurement adopt special volume units, such as liters or
gallons.

Squared-type and cubed-type equations are special cases of a more gen-
eral class, called "power law equations." These common equations have the
form:

A = k X Bn
where n is any number and k is a constant. A general feature of these rela-
tionships is that one variable changes much more quickly than another. Dou-
ble the edge of a cube, for example, and the volume increases eightfold; triple
the edge length and the volume becomes 27 times larger. The result is a steeply
rising graph, as shown in the examples in Figure 2-7.

1 2 3  4  5
Edge length (m)

(d)

6
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(a)

(b)

1
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Distance (m)

(c)

FIGURE 2-8. (a) A light shines on one square tile of a wall. (b) As the distance from
light to wall doubles, an area four times as large (four tiles) is illuminated. The light in-
tensity decreases to 1, in an inverse square relationship. (c) A graph of distance versus
intensity for an inverse square relationship.

4. Inverse Square Relationship Have you ever noticed how much brighter a
car's headlights are up close than when they are far away? The equation that
describes this distinctive relationship between brightness and distance (and lots
of other natural phenomena, as well) is called the inverse square relationship.

Imagine shining a flashlight on a wall with a regular array of square tiles
(Figure 2-8a). First, you hold the flashlight close to the wall so that all the
light falls onto just one square. If you measured that brightness with a photo-
graphic light meter, it might register 100 on the meter's scale.

If you move the flashlight twice that distance from the wall (Figure 2-8b),
then the light illuminates an area twice as high and twice as wide. The light
is spread out over an area four times as large as before. Consequently, the
light meter reads a brightness of about 25—only a s  strong as before. This
inverse square relationship between light intensity, I, and distance, d, is

k
= d z

where k is a constant. The general inverse square relationship is

A = Bz

A graph of an inverse square relationship (Figure 2-8c) reveals the sharp
fall-off of one variable as the other changes gradually. We find in later chap-
ters that inverse square relationships are common in nature; for example, in-
verse square relationships describe the change of magnitude of everyday
electrostatic and gravitational forces as a function of the distance between
two objects (see Chapters 5 and 16).

t
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• 1 4  Deve lop  Your Intu i t ion:
•
• 1  Flashbulbs a n d  Baseball
• A' Y o u ' l l  often see hundreds of flashbulbs go off at a stadium when a fa-
mous baseball player comes up to bat during a night game. Based on what
you know about the inverse square relationship, do these flashes help the
would-be photographers?

The intensity of light drops off as the inverse square of the distance, so
flashbulbs are ineffective at distances greater than a few dozen feet. All the
popping flashbulbs make a great sight, but they don't help photographs taken
over the great distances of a stadium.

UNITS A N D  MEASURES
As soon as we begin using numbers to describe any physical system, we have to
deal with the issue of units. Walk into any hardware store in the United States
and you will notice immediately that the things for sale are measured in many
different ways. You can buy paint by the gallon, insulation in terms of how many
BTU will leak through it, and grass seed by the pound. In some cases, the units
are strange indeed—nails, for example, are measured in an archaic unit called
the penny (abbreviated "d" for denarius, a small Roman coin). A 16d nail is a
fairly substantial thing, perfect for holding the framework of a house together,
while a 6d nail might find use tacking up a wall shelf.

No matter what the material, there is a unit to measure how much is being
sold. In the same way, in all areas of science, systems of units have been devel-
oped to measure how much of a given quantity there is. We will encounter many
of these units in this book—the newton as a measure of force, for example, and
the degree as a measure of temperature. Every quantity used in the sciences has
an appropriate unit or combination of units associated with it.

We customarily use certain kinds of units together, in what is called a
system of units. In a given system, units are assigned to fundamental quantities
such as mass (or weight), length, time, and temperature. Someone using that sys-
tem uses only those units and ignores the units associated with other systems.

The International System
In the United States, two systems of units are in common use. The one encoun-
tered most often in daily life is the English system. This traditional system of units
has roots that go back to the Middle Ages. The basic unit of length is the foot
(which was actually defined in terms of the average length of men's shoes outside
a certain church on a certain day), and the basic unit of weight is the pound.

Throughout this book, and throughout most of the world outside of the
United States, the metric system or, more correctly, the International System (ab-
breviated SI for the French Systeme International) is preferred. In this system,
the unit of length is the meter and the unit of mass is the kilogram. In both the
SI and the English system, the basic unit of time is the second.

In all probability, the unit from the metric system with which you are most
familiar is the liter, a measure of volume. A liter is the volume enclosed by a cube
10 centimeters on a side or 1000 cubes 1 centimeter on a side. Soft drinks and
other liquids are routinely sold in 1- and 2-liter bottles in the United States. The
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cubic meter—the volume contained in a cube 1 meter on a side—is also often
used as a volume measure in the metric system. The measure of volume in the
English system is the cubic foot, but liquids are commonly measured in gallons
(3.79 liters), quarts (4 gallon), and pints ($ gallon).

Within the SI, units are based on multiples of 10. Thus, the centimeter is one-
hundredth the length of a meter, the millimeter is one-thousandth of a meter,
and so on. In the same way, a kilometer is 1000 meters, a kilogram is 1000 grams,
and so on. This systematic organization differs from the English system, in which
12 inches equals 1 foot, 3 feet makes 1 yard, and 1760 yards makes 1 mile. A list
of metric prefixes follows.

METRIC PREFIXES
If the prefix is:
giga-
mega-
kilo-
hecto-
deka-

I f  the prefix is:
deci-
centi-
milli-
micro-
nano-

Multiply the basic unit by:
billion (thousand million)
million
thousand
hundred
ten

Divide the basic unit by:
ten
hundred
thousand
million
billion

I I
4 0  Physics in the Making

A Brief History of  Units

King John grants the
Magna Carta (Great Charter)
to his barons in England.
The charter required the
establishment of common
standards for weights and
lengths throughout the
kingdom.

Example with abbreviation
gigameter, Gm
megagram, Mg
kilometer, km
hectogram, hg
dekameter, dam

Example with abbreviation
decigram, dg
centimeter, cm
milligram, mg
micrometer, Am
nanogram, ng

Ever since humans started engaging in commerce, there has been a need for
agreements on weights and measures. Merchants needed to be assured that they
were buying and selling the same quantity of goods, that the buyer was getting
what he paid for and the seller was receiving full value for her wares. This meant
that someone (often a government) had to set up and maintain a system of stan-
dard weights and lengths.

The oldest weight standard we know about is the Babylonian "mina," which
weighed between 1 and 2 pounds. Archaeologists have found standard stone
weights carved in the shapes of ducks (5 mina) and swans (10 mina). In medieval
Europe, almost every town maintained its own system of weights and measures,
and the only institutions pushing for universal standards were the great trade
fairs. The keeper of the fair in Champagne, France, for example, kept an iron bar
against which all bolts of cloth sold at the fair had to be measured. The Magna
Carta, signed by King John of England in 1215 and generally reckoned to be one
of the key documents in the history of democracy, required that "There shall be
standard measures of wine, ale, and corn throughout the kingdom." The English
system of units eventually evolved from the welter of medieval systems.

The metric system, on the other hand, was a product of the French Revolu-
tion at the end of the eighteenth century. In 1799, the French Academy recom-
mended that the length standard be the meter, then defined to be 1/10,000,000
of the distance between the equator and the North Pole at the longitude of Paris
and that the gram be defined to be the mass of a cubic centimeter of water at
4°C. In the Connection section in this chapter, we discuss the modern definitions
of these quantities. • L I
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Conversion Factors
All systems of units help us describe physical objects and events. Confusion
may arise, however, when switching back and forth between two different sys-
tems. Conversion factors, which are used to shift from one system of units to
another, are thus vital in both science and commerce. If you have ever visited
a foreign country, you have had direct experience with this process; you had
to use conversion factors all the time when converting dollars to some other
currency.

Hundreds of conversion factors apply to the physical world. One person may
give temperature in degrees Fahrenheit, another in degrees Celsius. Distance may
be recorded in centimeters or in inches. Some important conversion factors are
tabulated in Appendix A.

Driving i n  N o r t h  Amer ica
Suppose you are driving in Canada. The odometer on your car reads 20,580 miles.
You see a sign that reads, "Toronto 87 kilometers." What will your odometer read
when you get to that city?

REASONING: Since the odometer reads in miles, the first thing to do is convert
87 kilometers to miles by using the conversion tables in Appendix A. We then
add that mileage to the current reading to get our answer.

SOLUTION: From Appendix A, the conversion factor from kilometers to miles is
0.6214. When you see the sign, then, the distance to Toronto is:

87 kilometers x 0.6214 mile/kilometer = 54 miles
When you have traveled this far the odometer will read:

20,580 + 54 = 20,634 miles •

Powers of Ten
Very large or very small numbers may be written con-
veniently in a compact way—a way that doesn't involve
writing down a lot of zeroes. The system called "powers
of ten" notation (also called "exponential notation") ac-
complishes this goal. The basic rules for the notation are:

1. Every number is written as a number between 1 and
10 followed by 10 raised to a power, or an exponent.

2. I f  the power of 10 is positive, it means "move the
decimal point this many places to the right."

3. I f  the power of 10 is negative, it means "move the
decimal point this many places to the left."

Following these rules, 3.56 x 103 is equivalent to 3560,
and 7.87 x  10-4 equals 0.000787.

Multiplying or dividing numbers in powers of ten
notation requires special care. I f  you are multiplying
two numbers, such as 2.5 x 103 and 4.3 x 105, you mul-
tiply 2.5 and 4.3, but you add the two exponents:

(2.5 x 103) x  (4.3 x 105) = (2.5 x  4.3) x  103+5
= 10.75 x 108
= 1.075 X 109

When dividing two numbers, such as 4.3 x 105 divided
by 2.5 X  103, you divide 4.3 by 2.5, but you subtract the
denominator exponent from the numerator exponent:

(4.3 x 105)42.5 x 103) = (4.3/2.5) x 105-3
= 1.72 x 102
= 172

For more examples of powers of ten notation, see Look-
ing at Length (p. 38).



You are about 100 million times larger than a virus, but the Earth is about 10 million times larger than
you. That sounds pretty big, but the Sun's diameter is about 100 times larger than that of the Earth; the
Earth is only the size of a sunspot. And the Sun is only a tiny dot in the Milky Way galaxy, which con-
tains a hundred billion stars just like it.

10-7 m

10°m

Virus = 0.0000001 meter
1 0 2 1 m

Galaxy = 100,000 light
years across (1018
kilometers)

Child =1 meter (about 3 feet)

107m

Earth = 13,000 kilometers
(about 7800 miles) in
diameter

10° m

Sun = 1,400,000 kilometers (850,000 miles)
in diameter
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eTh

Connection
Maintaining Standards
Systems of units are one place where governments become intimately involved
with science, since the maintenance of standards has traditionally been the task
of governments. When you buy a pound of meat in a supermarket, for example,
you know that you are getting full weight for your money because the scale is
certified by a state agency, which relies, ultimately, on international standards of
weight maintained by a treaty among all nations.

Originally, the standards were kept in sealed vaults at the International
Bureau of Weights and Measures near Paris, with secondary copies kept at places
such as the National Institutes of Standards and Technology (formerly National
Bureau of Standards) in the United States. For instance, the meter was defined
as the distance between two marks on a particular bar of metal, and the kilo-
gram was defined as the mass of a particular block of iridium-platinum alloy. The
second was defined as a certain fraction of the length of the year.

Today, however, only the kilogram is still defined in this way. Since 1967,
the second has been defined as the time it takes for 9,192,631,770 crests of a
light wave (see Chapter 19) of a certain type of light emitted by a cesium atom
to pass by a given point. In 1960, the meter was defined as the length of
1,650,763.73 wavelengths of the radiation from a krypton atom, and in 1983 it
was redefined to be the distance light travels in 1/299,792,458 seconds. In both
these cases, the old standards have been replaced by numbers relating to atoms—
standards that any reasonably equipped laboratory can maintain for itself.
Atomic standards have the additional advantage of being truly universal—every
cesium atom in the universe is equivalent to any other. Only mass is still de-
fined in the old way, in relation to a specific block of material kept in a vault,
and scientists are working hard to replace that standard by one based on the
mass of individual atoms. •

(a)

(a) The old standard meter. (b) The standard kilogram. The meter, which used to be
defined in terms of the distance between marks on a bar like this, is now defined in
terms of measurements on atoms.

A4

(b)
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Units You Use in Your Life
The metric and English systems each give a comprehensive set of units that could,
in principle, be used to measure everything we encounter in our lives. In point
of fact, for various historical and technical reasons, we often use units that don't
fit easily into either system all the time. How many of the following units do you
recognize?

acre—used to measure land area in the United States (43,560 square feet, or -1,7,th
of a square mile)

barrel—international unit for oil production (42 gallons; although many differ-
ent specialized definitions of barrel exist for other commodities, including wine,
spirits, and cranberries)

bushel—used to measure production of grains in the United States (1.24 cubic
feet)

caliber—used to measure diameter of bullets and gun barrels (0.01 inches)
carat—used to measure size of gemstones (0.2 grams)
fathom—used to measure depth of navigable water (6 feet)
knot—used to measure speed of ships (1.85 kilometers per hour)
ounce—used to measure the weight of produce (.* pound)
Troy ounce—used to measure precious metals p o u n d )

THINKING M O R E  A B O U T

Units:
Conversion to Metric Units

W h y  does the United States still use English
units long after most of the rest of the world

has converted to SI units? It may have to do with
nonscientific factors such as the geographical iso-
lation of the country, the size of our economy (the
world's largest), and, perhaps most important, the
expense of making the conversion. (For example,
think of the cost to change all the road signs from
miles to kilometers on the entire interstate high-
way system.)

To understand the debate over conversion,
you have to realize one important point about
units. There is no such thing as a "right" or "sci-
entific" system of units. Units can only be con-
venient or inconvenient. Thus, U.S. manufacturers
who sell significant quantities of goods in foreign
markets long ago converted to metric standards

to make those sales easier. Builders, on the other
hand, whose market is largely restricted to the
United States, have not.

By the same token, very few scientists
actually use the SI exclusively in their work. Al-
most every discipline, including physics, chemistry,
geology, biology, and astronomy, has its own pre-
ferred non-SI units for some measurements. As-
tronomers, for example, often measure distance in
light years or in parsecs; geologists usually mea-
sure pressure in kilobars; and many physicists pre-
fer to record energy in electron volts. In  the
United States, engineers use English units almost
exclusively—indeed, when the federal govern-
ment was considering a tax on energy use in 1993,
it was referred to as a BTU tax (the BTU, or
British thermal unit, is the unit for energy in the
English system). Medical professionals use the cgs
system, in which the unit of length is the cen-
timeter, the unit of mass is the gram, and the unit
of time is the second. Next time you have blood
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drawn, take a look at the syringe. It will be cali-
brated in cubic centimeters (cc).

Sometimes the use of  different systems of
units on the same scientific or engineering project
can lead to trouble. A notable example occurred
in fall 1999 when a spacecraft costing $125 million
crashed into the planet Mars instead of orbiting it
as planned. It turned out that the company that
built the rocket for slowing down the spacecraft
as it got close to Mars reported its thrust as pounds

Summary

per square foot, but the flight engineers assumed
the number was in metric units. The difference was
enough to throw the spacecraft off course by a few
hundred miles, leading to the crash.

Given the wide range of units actually in use,
how much emphasis should the U.S. government
give to metric conversion? How much should the
government be willing to spend on the conversion
process—how many new signs as opposed to how
many repaired potholes on the roads?

Language allows people to communicate information and
ideas. In their efforts to describe the physical world with ac-
curacy and efficiency, scientists have created many new
words to distinguish the many different kinds of objects in
the universe.

These descriptive terms are amplified by mathematics,
which allows scientists to quantify their observations. Scalars
are numbers that indicate a quantity—mass, length, tem-
perature, and time are familiar scalar quantities. Other quan-
tities, such as velocity and change i n  position, must be

Key Terms

described wi th  a  vector, which combines information on
both magnitude (a scalar) and direction.

Many scientists work to find mathematical relationships
between two  o r  more properties—temperature and the
length of a metal bar, for example. Such relationships may
be presented in the form of an equation or a graph.

Scientific measurements re ly  o n  a  system o f  units,
particularly the metric system or International System (SI).
Conversion factors are used to  change f rom one unit  to
another.

conversion factor Established mathematical quantity used to
shift from one system of units to another. (p. 37)

equation The definition of a precise mathematical
relationship among two or more measurements. (p. 29)

International System or SI (Systeme International) A n
internally consistent system of units within the metric
system; also known as the metric system. (p. 35)

Review

1. Why do physicists and other scientists require a specialized
vocabulary?

2. Why is scientific vocabulary still growing?

3. What is a scalar quantity? Give an everyday example.

4. What is a vector quantity? Give an everyday example.

5. What is the role of equations in science?

6. What is a direct relationship? Give an example.

7. What is an inverse relationship? Give an example.

8. What is a power law relationship? Give an example.

scalar Any quantity that can be expressed as a single number
and without a direction. (p. 26)

system of units Units assigned to fundamental quantities
such as mass (or weight), length, time, and temperature.
(p. 35)

vector A  quantity that requires two numbers in its
definition—a magnitude and a direction. (p. 26)

9. What is an inverse square relationship? Give an example.

10. Describe the ways a scientist might present quantitative
data.

11. Why do we need standards of units and measures?

12. What is a system of units? What system do most scientists
use?

13. Discuss the relative advantages of the English system and
SI of units and measurements.

14. What are the units of length, mass, and volume in the En-
glish system of units?
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15. What are the units of length, mass, and volume in the met-
ric system of units?

16. What is a conversion factor?
17. Why do scientists often use powers of ten notation?

Questions

18. Identify three units of  measurement that you might en-
counter at a grocery store.

19. Which branch of the U.S. government regulates standard
weights and measures?

1. Categorize the following terms as either a scalar or vector
quantity. Explain your reasoning for each choice.
a.
b.
c.
d.
e.
f.
g.
h.
i.
J.
k.
1.

m.
n.

a 100-yard dash
20,000 leagues under the sea
a $75.00 dress
4 days
100 degrees Celsius
1996 A.D.

1 mile northeast
the lower 40 acres
12:45 P.M.
a cubic yard of cement
a force of 20 newtons
40 m/s west
20 kg
30 revolutions per minute

2. What is the principal difference between a vector and a
scalar quantity, and why is that important in science?

The following graphs are for Questions 3-5.

(a) ( b ) (c) ( d )

3. You have entered a pie-eating contest to eat as many pieces
of pie in the shortest amount of time until you can't eat an-
other bite. Your physics instructor watches you during the
contest and makes a graph of the number of pieces of pie
eaten per minute (vertical axis) versus the time elapsed
(horizontal axis). Which of the graphs most likely repre-
sents your instructor's data? Express this trend in words.

4. To maximize your chances of winning the lottery, you have
decided to buy multiple lottery tickets. Which graph best
represents the chance to win the lottery (vertical axis) ver-
sus the number of tickets bought (horizontal axis)? Explain
this trend in words.

5. The water in the oceans rises and falls with the rotation of
the Earth. These cycles are called tides. Which graph best
represents the height of the ocean (vertical axis) versus the
time of day (horizontal axis)? Explain the trend in words.

6. As discussed in the chapter, scientists at places such as the
National Institutes o f  Standards and Technology near
Washington, D.C., take great pains to protect the standard

kilogram, encasing it in a vault filled with nitrogen. Why do
you suppose this has to be done, while no one seems to
want to do the same for the meter and the second?

7. A  woman can paddle her kayak at a speed of 3 kilometers
per hour through still water. She is paddling upstream in a
river that has a flow speed of 2 kilometers per hour. Draw
an arrow that represents the velocity of the kayak through
the water and another arrow that represents the velocity
of the water. Draw a third arrow that represents the actual
velocity of the kayak.

8. Suppose a jet airplane travels at 500 miles per hour in still
air. On a recent flight the plane was pointed east and was
encountering a 100-mile-per-hour side wind, blowing to-
ward the north. Draw an arrow that represents the veloc-
ity of the plane without the wind. Draw another arrow that
represents the velocity of the wind. Draw a third arrow that
represents the velocity of the plane in the presence of the
side wind.

9. Decompose the following vectors into a horizontal com-
ponent and a vertical component. (Draw a horizontal vec-
tor and a  vertical vector whose sum equals the vector
shown.)

(a) ( b )

/
(c) ( d )

10. As a person grows taller, he or she usually gets heavier,
too. Is the relationship between the weight of a person and
a person's height a direct relationship? Why or why not?
Give examples to support your conclusion.

11. Consider the relationship between a person's body fat
percentage and their top running speed. Is  this more
likely to be a direct relationship or an inverse relationship?
Explain.

12. You have been hired to paint circles of various diameters
as a decorative feature on a new building. Consider the re-
lationship between the amount of paint needed to paint a
circle and the diameter of that circle. Is this a direct, in-
verse, or power law relationship?
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13. Assuming the price of  musical CDs has remained fairly 1 4 .  Would you rather be given 10 kilo-cents or 1,000,000 nano-

constant over the past two years, characterize the rela- d o l l a r s ?  Explain.
tionship between the amount of money a person has spent
on CDs and the number of CDs they've bought in the last 1 5 .  About how many seconds are there in a year: 30 mega-
two years. Is it a direct, inverse, or power law relationship? s e c o n d s ,  30 kilo-seconds, or 30 milli-seconds?

Problem-Solving Examples

n

(1

Vectors o n  t h e  Wa t e r
An inexperienced canoeist sets out straight across a 1-mile-
wide river, paddling at 5 miles per hour. The average cur-
rent of the river is 6 miles per hour. Where does she land
on the opposite side of the river?

SOLUTION: This problem involves two vectors. The first
vector is 1 mile long in a direction perpendicular to the
flow of the river (Figure 2-9). The second vector, in a di-
rection parallel to the river's flow, is due to the 6-mile-per-
hour current acting on the canoe while it's in the water. In
order to calculate the length of this second vector, we have
to determine how long the canoe is in the water:

Distance
Time = Velocity

1 mile=
5 miles/hour

= 0.2 hour

So the length of the second vector is:

Distance = Velocity X Time
= 6 miles/hour x 0.2 hour
= 1.2 miles

The canoeist winds up more than a mile downstream from
where she left. •

Vector 2 = 1.2 miles

FIGURE 2-9.  A person in a rowboat crossing a river
is also carried downstream by the current.

Running t h e  Dash
American athletes used to run an event called the 100-
yard dash. I f  an athlete could run the 100-yard dash in
10 seconds, what time would you expect her to have in the
100-meter dash?

REASONING AND SOLUTION: The first step is to use the con-
version factor in Appendix A to convert 100 meters to a
distance in feet. From Appendix A, the conversion factor
for meters to feet is 3.281. Consequently, 100 meters is:

100 meters x 3.281 feet/meter = 328.1 feet

We then have to divide the number of feet by 3 to con-
vert to yards:

328.1 feet = 109.4 yards
3 feet/yard

If  we assume that the runner travels at the same speed in
the two races, the 100-meter race (equal to a 109.4-yard
race) will take longer than the 100-yard race. The time of
the 100-meter race is proportional to the distances of the
two races multiplied by 10 seconds:

Time = 10 seconds x  109.4 yards
100 yards

= 10.94 seconds

(The women's world record for the 100-meter dash is 10.49
seconds, set in 1988 by American Florence Griffith Joyner.
At  the same speed, would she have run 100 yards in more
or less than 10.0 seconds?) •
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Volume (quarts) Temperature (degrees Celsius)
4.0000 6
4.0096 12
4.0288 24
4.0672 48
4.1440 96

5 3.75 3.2 0.85
10 2.65 4.5 1.70
15 2.17 5.5 2.54
20 1.89 6.3 3.40
30 1.56 7.6 5.08

Temperature
(kelvins)

Volume
(liters)

Pressure
(atmospheres)

100 1000 1.0
100 500 2.0
100 250 4.0
100 125 8.0
200 2000 1.0
200 1000 2.0
200 500 4.0
300 750 4.0
600 1500 4.0

Distance from bulb (feet) Brightness (lumens)
1 1600
2 400
3 178
4 100
5 64

10 16
20 4

Problems

1. I n  Canada a speed limit sign says 70 kilometers per hour.
What is the legal speed in miles per hour?

2. How many liters are in a half-gallon container of milk?

3. A  runner consistently completes a 1-mile race in 4 min-
utes. What is his expected time in a 1500-meter race?

4. Write the following numbers in powers of ten notation:
a. 1,000,000 c .  2.5
b. 1/1,000,000 d .  1/2.5

5. Convert the following numbers into decimal notation.
a. 7  X 104
b. 7  x  10-4

c. 6.41 x  106
d. 6.41 x  10-6

6. The following table gives the volume of 1 gallon (4 quarts)
of antifreeze for various temperatures starting at 6 degrees
Celsius. This antifreeze is typically used in American cars.

a. Express any trends or patterns in words.
b. Display the data in graphical form.
c. Express any trends or  patterns in an equation with

words.
d. Express any trends or  patterns in an equation with

symbols.

7. Veronica was doing a laboratory assignment in which she
was investigating the time of descent, final speed, acceler-
ation, and incline angle o f  a marble rolling down an in-
clined track and how each was related to the other. Her
data are given next.

Incline T i m e  of F i n a l
Angle D e s c e n t  S p e e d  A c c e l e r a t i o n

(degrees) ( s )  ( m / s )  [ ( m / s ) / s ]

A. Consider only the incline angle and the acceleration.
a. Express any trends or patterns in words.
b. Display the data in graphical form.
c. Express any trends or patterns in an equation with

words.
B. Consider only the incline angle and the time of descent.

a. Express any trends or patterns in words.
b. Display the data in graphical form.

c. Express any trends or patterns in an equation with
words.

C. Consider only the incline angle and the final speed.
a. Express any trends or patterns in words.
b. Display the data in graphical form.
c. Express any trends or patterns in an equation with

words.

8. A n  industrious student decided that she wanted to prove
certain laws about gases and the relationships among pres-
sure, volume, and temperature. In Sarah's science labora-
tory, she collected the following data.

a. Show by using a graph, an equation, or a written state-
ment that the volume is directly proportional to the
temperature if the pressure is held constant.

b. Use these data to show Boyle's law, which states that at
a constant temperature the pressure and volume vary
inversely.

9. The brightness of a lightbulb can be measured by a light
meter in a unit named lumens. Jeremy decided to investi-
gate how the brightness of a certain lightbulb changes with
the distance from the lightbulb. Jeremy recorded the fol-
lowing data.

a. Express any trends or patterns in words.
b. Display the data in graphical form.
c. Express any trends or patterns in an equation with

words.
d. Express any trends or patterns in an equation with

symbols.
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Country

Annual
energy

Population u s e
(millions) (109 BTU)

Wilderness
area

(square
miles)

Annual
solid
waste

(106 tons)
United States 249.2 76,355 379,698 230.1
Canada 26.5 10,309 2,473,308 18.1
Japan 123.5 15,707 9,276 53.2
Germany 77.5 13,881 19,128 21.0
United 57.2 8,575 17,912 22.0

Kingdom
France 56.1 8,355 18,454 30.2
Italy 57.1 6,579 5,021 19.1

10. Ron used 6980 kW-h (kilowatt-hours) o f  electricity last
year and Jennifer used 5235 kW-h in only 10 months.
a. Who used, on the average, the most electricity per

month?
b. What, on the average, were Ron and Jennifer's daily

uses of electricity? (Assume a 30-day month.)
c. I f  Ron paid 8 cents per kW-h and Jennifer paid 10 cents

per kW-h, who paid more for electricity last year?
11. PJ. maintains the following exercise schedule. Every Sun-

day she runs for 30 minutes using 12 calories per minute.
On Monday, Wednesday, and Friday, P.J. takes brisk walks
for 1 hour each day (4 calories per minute), and every Tues-
day and Thursday P.J. plays volleyball for 1.5 hours (5.5
calories per minute). On Saturday she does not exercise.
a. Calculate the total amount of calories P.J. expends dur-

ing the week.
b. O n  average, how many calories per day (include Satur-

day) does P.J. expend?
12. The G-7 countries (the United States, Canada, Japan, Ger-

many, the United Kingdom, France, and Italy) are the lead-
ing industrialized countries in the world. Their populations,
total energy use, total wilderness areas, and total solid waste
disposed for 1991 are given in the following table.

a. Which country uses the most energy per person? The
least energy per person?

b. Which country has the most wilderness area per per-
son? The least wilderness area per person?

Investigations

c. Which country disposes of the most solid waste per per-
son? The least solid waste per person?

d. I f  you combined the four European countries into one
country, would your answers to a, b, and c change?

13. Express the following quantities in powers of ten notation.
a. 150 gigadollars
b. 43 hectofeet
c. 23  micrometers
d. 92 nanoseconds
e. 74  milligrams
f. 617  kilobucks
g. 43 microbreweries

14. Multiply the following.
a. (4.3 x  106) x  (7.4 x  10-7)
b. (1.2 x 10-8) x  (3.4 x  10-5)
c. (5.5 X 103) X (6.7 X 107)
d. (6.6 X 102) X 120
e. (2.3 x  1012) x  (4.9 x  108)

15. Divide the following.
3.3 x  1012
3.0 X 10-4
7.6 X 10-6
8.2 X 108
1.5 x  102
5.0 x 107
2.2 X 1011

a.

b.

c.

d. 4.5 x  108
16. Convert the  given quantities t o  the  units shown i n

parentheses.
a.
b.
c.
d.
e.
f.
g.
h.
i.

40 acres (square miles)
23,000 bushels (cubic yards)
50 barrels (liters)
125 bushels (cubic meters)
50 caliber (millimeters)
50,000 carats (grams)
20 fathoms (meters)
600 knots (kilometers per second)
540 knots (meters per second)

1. Identify 20 specialized terms that relate to your favorite
sport. What statistics are commonly recorded, and how are
they calculated?

2. Investigate the history of temperature scales. Why are two
different scales, Celsius and Fahrenheit, still in use?

3. Are scientists the only people who have devised specialized
vocabulary? What other fields have their own jargon?

4. Describe your favorite tree so that another student can
identify it.

5. Read a history o f  the French Revolution. Why did this
political movement lead to a new system of  weights and
measures?

6. Investigate the history of systems of units used in a well-
established profession, such as surveying, agriculture, cook-
ing, or maritime commerce. Which of these specialized units
are still used today?

7. The computer age has led to a wide variety of new units of
measurement (e.g., "gigabyte" or "megaflop"). Identify some
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of these units and investigate their history. When were they
introduced, by whom, and why?

8. Both common temperature scales, the Fahrenheit and the
Celsius, use the freezing and boiling points of water for their
reference points. Since the choice of units is largely a mat-
ter of convenience, what sort of temperature scale do you

WWW Resources

suppose a beer manufacturer, who works with alcohol, might
use? A jewelry maker working in gold? A beekeeper who
has to prepare honey for bottling? (Hint: Honey flows eas-
iest when it is warm but starts to change chemically at tem-
peratures around 160°E)

See the Physics Matters home page at vvvvw.wiley.comicollege/trefil for valuable web links.

1. powersof10.com This interactive web site is based on a famous film by Charles and Ray Eames. You can guide yourself
through the metric system of prefixes.

2. helios.physics.uoguelph.ca/tutorials/vectors/vectors.html The vectors tutorial at the Department of Physics, University
of Guelph.

3. www.pa.uky.edu/—phy211NecArith/ Another vector tutorial—this one is an interactive graphical Java applet.
4. www.nrlm.go.jp/keiryou-e.html The official scientific standards website of Japan, with a nice set of descriptions of how the

basic standards are established.
5. www.velocity.net/—trebor/prelude.html A  published essay, A Prelude to the Study of Physics, discussing the role of mod-

els and problem-solving in physics.
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