
Motions
in the Universe

K E Y  I D E A

The regular motions in the
universe can be discovered
by observation and
described mathematically.

PHYSICS AROUND US . .  .  Calculated Moves
H o w  many times have you crossed a street to-

day? Once? A dozen times? More? It's such
an ordinary thing to do that you probably

don't even keep track. Yet a simple act like crossing a
street contains, within itself, a very important lesson
about the way the universe works.

Think about what happens when you see a car ap-
proaching. You watch it for a while, estimate its speed,
make an unconscious calculation about how long it
will take before the car gets to your corner, and only
then do you make a decision about whether to start
across the street. You couldn't carry out this ordinary
process if you didn't have an understanding of how
objects moved—an understanding born of long expe-

rience with cars and their behavior. Early in your life
you observed cars in motion, came to some conclu-
sions about their properties, and have used (and
tested) that knowledge ever since. We cannot tell
whether the car will turn left or right at the intersec-
tion or how much gas is in the tank, but we don't need
to know that for estimating how quickly the car is ap-
proaching. Our observation and experience enable us
to determine what we need to know for deciding when
to cross the street.

In the same way, physicists observe the world and
summarize their conclusions, often using a series of
mathematical laws to do so. This process forms the
core of what we call science.
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48 CHAPTER 3 Motions in the Universe

PREDICTABIL ITY

The stars in the night sky,
showing constellations.
Most of these stars are not
visible in the glare of city
lights.

Stonehenge is testimony to
the predictability of the
Earth's seasons over the
centuries.

Among the most predictable objects in the universe are the lights we see in the
sky at night—the stars and planets. People who live in today's large metropoli-

tan areas no longer pay much attention to the richness of the night sky's
shifting patterns. But think about the last time you were out in the coun-
try on a clear moonless night, far from the lights of town. There, the
stars seem very close, very real. Now try to imagine what it was like be-
fore the development of artificial lighting in the nineteenth century.
Human beings often experienced jet-black skies that were filled with
brilliant pinpoint stars.

If you observe the sky closely, you notice that it changes; it's never
quite the same from one night to the next. Our ancestors also observed
regularities in the arrangement and movement of stars and planets, and
they wove these patterns into their religion and mythology. They knew,
based on their observations, that when the Sun rose in a certain place,
it was time to plant crops because spring was on its way. They came to

know that there were certain times of the month when a full Moon would illu-
minate the ground, allowing them to continue harvesting and hunting after sun-
set. To these people, knowing the behavior of the sky was not an intellectual
game or an educational frill. It was an essential part of their lives. No wonder,
then, that astronomy, the study of the heavens, was one of the first sciences to
develop.

By relying on their observations and records of the regular motion of the
stars and planets, ancient observers of the sky were perhaps the first humans to
accept the most basic tenet of science:

The universe is predictable and quantifiable.
Without the predictability of physical events, as we saw in Chapter 1, and

our ability to quantify what we observe, as discussed in Chapter 2, the scientific
method could not proceed.

Stonehenge and the Cycle of  Seasons
No better symbol exists of humankind's discovery of the predictability of nature
than Stonehenge, the great prehistoric stone monument on Salisbury Plain in

southern England. The structure consists of a large circular bank
of earth, surrounding a ring of single upright stones, which, in turn,
encircle a horseshoe-shaped structure of five giant stone archways.
Each arch is constructed from three massive blocks—two vertical
supports several meters tall capped by a great stone lintel. The open
end of the horseshoe aligns with an avenue that leads northeast to
another large stone, called the "heel stone" (Figure 3-1).

Stonehenge was built in spurts over a long period of time,
starting about 2800 B.c. Despite various legends assigning it to the
Druids, Julius Caesar, or the magician Merlin (who was supposed
to have levitated the stones from Ireland), archaeologists have
shown that it was built by several groups of people, none of whom
had a written language and some of whom even lacked metal tools.

Stonehenge, like many similar structures scattered around the world, was
built to mark the passing of time—a calendar based on the movement of objects
in the sky. At Stonehenge, the seasons were marked by the alignment of the
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stones with astronomical events. On midsummer's
morning, for example, someone standing in the center
of the monument sees the Sun rising directly over the
heel stone.

Building a structure such as Stonehenge required
the accumulation of a great deal of knowledge about
the sky—knowledge that could only have been gained
through many years of observation. Without a written
language, people needed to pass complex information
about the movements of the Sun, the Moon, and the
planets from one generation to the next. How else could
they have aligned their stones so perfectly that modern-
day Druids in England can still greet the midsummer
sunrise over the heel stone?

But as impressive as Stonehenge the monument
might be, Stonehenge the symbol of universal regular-
ity and predictability is even more impressive. If the uni-
verse were not regular and predictable—if repeated
observation could not show us patterns that occur over
and over again—the very concept of a monument such
as Stonehenge would be impossible. And yet, it continues to stand after 4000
years, a testament to human ingenuity and to the possibility of predicting the be-
havior of the universe in which we live.

Stonehenge
and Ancient
Astronauts
Who built Stonehenge? Confronted by such an awe-
some stone monument, with its precise orientation and
epic proportions, some writers evoke outside interven-
tion by extraterrestrial visitors. Many ancient monu-
ments, including the pyramids of Egypt, the Mayan
temples of Central America, and the giant statues of
Easter Island, have been ascribed to these mysterious
aliens. One point often made is that the stones in the
monument are simply too large to have been moved by
people who didn't even have the wheel.

The largest stone at Stonehenge, about 10 meters
(more than 30 feet) in length, weighs about 50 metric
tons (50,000 kilograms or about 100,000 pounds) and
had to be moved overland some 30 kilometers (20
miles) from quarries to the north. Could primitive peo-
ple equipped only with wood and ropes have moved
this massive block?
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FIGURE 3-1. Stonehenge is
built so that someone stand-
ing at the center will see the
Sun rise over the heel stone
on midsummer's morning.

While Stonehenge was being built, the climate was
cooler than it is now and it snowed frequently in south-
ern England, so the stones could have been hauled on
sleds. A single person can easily haul 100 kilograms on
a sled (think of pulling a couple of your friends). How
many people would it take to haul a 50,000-kilogram
stone? To estimate the answer, we divide the total
weight of the largest stone by the weight an individual
can move:

50,000 kg
100 kg pulled by each person — 500 people

Organizing 500 people for the job would have been a
major social achievement in ancient times, but it was
certainly physically possible (Figure 3-2).

Scientists cannot absolutely disprove the possibil-
ity that Stonehenge was constructed by some strange,
forgotten technology. But why invoke such alien inter-
vention when the concerted actions of  a dedicated,
hard-working human society would have sufficed? All
of us are fascinated and awed by the mysterious and
unknown, and an ancient structure such as Stonehenge,
standing stark and bold on the Salisbury plain, certainly
evokes these feelings.

When confronted with phenomena in a physical
world, we should accept the simplest explanation as the
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most likely. This procedure is called Ockham's Razor,
after William of Ockham, a fourteenth-century English
philosopher who argued that "postulates must not be
multiplied without necessity." That is, given the choice,

Initial ground level
(b)

the simplest solution to a problem is most likely to be
right. Scientists thus reject the notion of ancient astro-
nauts building Stonehenge, and they relegate such spec-
ulation to the realm of pseudoscience.

FIGURE 3-2. Perhaps the most puzzling aspect of the construction of Stonehenge is the raising of the giant lin-
tel stones. As shown in this reconstruction, three steps in the process were probably (a) dig a pit for each of the
upright stones; (b) pile dirt into a long sloping ramp up to the level of the two uprights so that the lintel stones
could be rolled into place; and (c) cart away the dirt, thus leaving the stone archway.
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THE BIRTH O F  MODERN ASTRONOMY
When you look up at the night sky, you see a dazzling array of ob-
jects. Thousands of visible stars fill the heavens and appear to move
each night in stately, circular arcs centered on Polaris, the North
Star. The relative positions of these stars never seem to change,
and closely spaced groups of stars, called constellations, have been
given names such as the Big Dipper and Leo the Lion. Moving
across this fixed starry background are the Earth's Moon, with its
regular succession of phases, and half a dozen planets that wander
through the sky. You might also see swiftly streaking meteors or
long-tailed comets, transient objects that grace the night sky from
time to time.

The motion of planets can be especially complex. From night
to night most planets, most of the time, appear to move gradually
from east to west against the backdrop of the stars. But occasion-
ally a planet seems to reverse its course, seemingly traveling back-
ward with respect to the stars in retrograde motion for a few weeks
(Figure 3-3). How can that be?

The Historical Background—
Ptolemy and Copernicus
Claudius Ptolemy, an Egyptian-born Greek astronomer and geog-
rapher who lived in Alexandria in the second century AD, pro-
posed the first plausible explanation for such complex celestial
motions. Working with the accumulated observations of earlier Babylonian and
Greek astronomers, he put together a singularly successful theory about how the

Earth
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Arcs of stars around Polaris, the North Star.

FIGURE 3-3. Today we know that the retrograde motion of Mars can be explained by
the fact that as the Earth passes Mars in orbit, the position of Mars against the back-
ground of stars seems to reverse itself temporarily. This explanation can only work if
the Earth moves, so Greek astronomers could not have evoked it.
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(a) ( b )

A portrait of Nicolas
Copernicus.

FIGURE 3-4. The Ptolemaic (a) and Copernican (b) systems. Both systems used circular
orbits. The fundamental difference is that Copernicus placed the Sun at the center.

heavens had to be arranged to produce the display we see every night (Figure
3-4a). Earth sits unmoving at the center of Ptolemy's universe. Around it, on a
series of concentric rotating spheres, move the stars and planets. The model was
carefully crafted to take account of observations. The planets, for example, were
attached to small spheres rolling inside of the larger spheres so that their uneven
retrograde motion across the sky could be understood. This system remained the
best explanation of the universe for almost 1500 years. It successfully predicted
planetary motions, eclipses, and a host of other heavenly phenomena and was
one of the longest-lived scientific theories ever devised.

During the first decades of the sixteenth century, however, a Polish cleric by
the name of Nicolas Copernicus (1473-1543) proposed a competing hypothesis
that was to herald the end of Ptolemy's crystal spheres. His ideas were published
in 1543 under the title On the Revolutions of the Spheres. Copernicus retained
the notion of a spherical universe with circular orbits, and even kept the idea of
spheres rolling within spheres, but he asked a simple and extraordinary question.
Is it possible to construct a model of the heavens whose predictions are as ac-
curate as Ptolemy's, but in which the Sun, rather than the Earth, is at the cen-
ter? We do not know how Copernicus, a busy man of affairs in medieval Poland,
conceived this question, nor do we know why he devoted his spare time for most
of his adult life to answering it. We do know, however, that in 1543, for the first
time in over a millennium, a serious alternative to the Ptolemaic system was pre-
sented (see Figure 3-4b).

Tycho Brahe and the Art  of  Observation
With the publication of the Copernican theory, two competing models of the uni-
verse confronted astronomers. The Ptolemaic and Copernican systems differed
in a fundamental way that had far-reaching implications about the place of
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humanity in the universe. They both described possible universes, but in one the
Earth, and by implication humankind, was no longer at the center. The as-
tronomers' task was to decide which model best describes our universe.

To resolve this question, astronomers had to compare the predictions of the
two competing hypotheses. When astronomers tried to make comparisons, how-
ever, a fundamental problem became apparent. Although the models of Ptolemy
and Copernicus made different predictions about the position of a planet at mid-
night or the time of moonrise, the differences were too small to be measured
with equipment that was available at the time. The telescope had not yet been
invented and astronomers had to record planetary positions by depending en-
tirely on naked-eye measurements with awkward instruments. Until the accuracy
of measurement was improved, the question of whether or not the Earth was at
the center of the universe could not be decided.

Some scientists thrive on experimental challenges and they revel in
devising new tricks for making measurements better than anyone else
before. The Danish nobleman Tycho Brahe (1546-1601) was such a sci-
entist. Abducted in infancy by his uncle, Tycho was raised in comfort and
given the best possible education. His scientific reputation was firmly es-
tablished at the age of 25, when he observed and described a new star
in the sky (in fact, a type of exploding star called a supernova). By the
age of 30, Brahe received from the Danish king the island of Hveen off
the coast of Denmark and funds to build an observatory there.

Brahe built his career on designing and using vastly improved ob-
servational instruments. He determined each star or planet position with
a quadrant, a large sloping device something like a gunsight. With this
sort of instrument, you can record the position of a star or planet by
measuring two angles—for example, the angle up from the horizon and
the angle around from due north. Brahe constructed his sighting device
of carefully selected materials, and he learned to correct his measure-
ments for the inevitable contraction of brass and iron components that
occurred during the cold Danish nights. Over a period of 25 years, he accumu-
lated precise data on the positions of the planets with these instruments, com-
piling the most accurate record of planetary positions of his day.

Kepler's Laws
After Tycho Brahe died in 1601, his data passed into the hands of his assistant,
Johannes Kepler (1571-1630), a German mathematician who had joined Tycho
2 years before. Kepler was skilled in mathematics, and he was able to analyze
Tycho Brahe's decades of planetary data in new ways. In the end, Kepler found
that the data could be summarized in three basic mathematical statements about
the solar system, known as Kepler's laws of planetary motion. The most impor-
tant of these (shown in Figure 3-5) states that all planets, including the Earth,
orbit the Sun in elliptical paths, not in perfect circles as had been previously as-
sumed. In this picture, the spheres within spheres are gone. Not only do Kepler's
laws give a more accurate description of what is observed in the sky, but they
present a simpler picture of the solar system as well. And as we have seen in our
discussion of Stonehenge, simple explanations are often a sign of deeper under-
standing of how nature works.

An ellipse is defined as a curve drawn so that the sum of the distances from
any point on the curve to two fixed points is always the same. Imagine tacking

A portrait of Tycho Brahe
in his observatory on the
island of Hveen.

This instrument, called a
quadrant, measures the an-
gular position of stars and
planets to the Earth.

44/

Johannes Kepler (1571-1630).
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Ellipse

FIGURE 3-5. Kepler's first law, shown schematically. An el-
lipse is a geometrical figure in which the sum of the dis-
tances to two fixed points (each of which is called a focus)
is always the same. For the planets, the Sun is at one focus
of the ellipse.

FIGURE 3-7. Kepler's second
law of equal areas states that
planets move fastest when
they are closest to the Sun
and slowest when at the far-
thest point in their orbits.
Thus, a planet in an elliptical
orbit sweeps out equal areas
in equal times.

•
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FIGURE 3-6.  You can draw an
ellipse by bracing a pencil
against a string that is tacked
down at each end by a pin, and
drawing a curve while keeping
the string taut. The two pins are
at the foci of the ellipse. Note
that as the two pins are brought
closer together, the ellipse more
nearly approximates a circle.

down a length of loose string at two points, then drawing a curve by bracing a
pencil in the now-taut string, as shown in Figure 3-6. Each of the two fixed points
is called a focus. What Kepler found was that the orbits of all planets known at
the time, from Mercury to Saturn, have one focus at the Sun. The statement that
the planets have elliptical orbits with one focus at the Sun is known as Kepler's
first law of planetary motion.

Kepler's second law describes the speed at which the planets move in their
elliptical orbits. If you remember the playground game in which you ran toward
a post, then grabbed it on the fly, and swung around, you have a pretty good no-
tion of the way the planets move. They speed up as they get closer to the Sun
and then slow down in the farther parts of their orbits. Kepler's second law is
usually stated in terms of equal areas, a concept illustrated in Figure 3-7. Imag-
ine that a line drawn from the Sun to an orbiting planet sweeps out an area in
a fixed period of time. Kepler's second law says that for a given time interval, this
swept-out area is the same, no matter where the planet is in its orbit. A glance
at Figure 3-7 should convince you that this means that planets move fastest when
they are nearest the Sun and slowest when farther away.

Finally, Kepler turned his attention to the period of a planet's revolution—
the time it takes for one complete orbit, or its "year." Planets farther from the
Sun have a longer year than those that are closer in for two reasons: (1) they have
farther to go as they make their circuit, and (2) the outer planets travel more
slowly than the inner ones. The net effect is a systematic relationship between the
planet's period and its orbital distance from the Sun. Kepler's third law expressed
this relationship between a planet's distance from the Sun and its period as a sim-
ple equation that allows us to predict the behavior of orbiting objects.

1. In words:
The farther a planet is from the Sun, the longer its year.
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2. In an equation with words:
The square of the period of a planet's orbit is proportional to the cube of
its average distance from the Sun.

3. In an equation with symbols:

r2  R3 = constant

or t 2  = constant X R3
where t is the time it takes a planet to go around the Sun and R is the aver-
age radius of the elliptical orbit. If we approximate the orbit by a circle (which
works pretty well for the planets), then R is the radius of that circle.

If t is measured in Earth years (so for Earth, t = 1) and R is measured in
terms of the distance between the Sun and the Earth (so for Earth, R = 1), then
the constant in Kepler's law is also equal to 1.

Jupiter's Year
Jupiter is about 5.2 times farther from the Sun than the Earth is. How long is
Jupiter's year?

REASONING AND SOLUTION: Kepler's third law relates a planet's year, t, and its
distance from the Sun, R. In this case, R = 5.2 and we want to find t by using
the equation

t2
R3 — 1

Substituting the known value of R:

t2 t 2

5.23 1 4 1

so t  = N/1.11 = 11.9 years
So Jupiter orbits the Sun once every 11.9 Earth years. •

Decades of careful observations by Brahe and mathematical analysis by
Kepler firmly established that the Earth is not at the center of the universe, that
planetary orbits are not circular, and that neither Ptolemy nor Copernicus were
correct in their models of the universe (although the Copernican model was much
closer to the modern view than Ptolemy's). This research also illustrates a re-
current point about scientific progress. The ability to answer scientific questions
often depends on the quality of instruments scientists have at their disposal. The
person dealing with the grubby details of how a telescope measures the position
of a star may not appear to be doing something glamorous, but such people of-
ten provide insights into the most fundamental scientific questions. In Tycho's case,
his meticulous attention to experimental detail provided an important step in an-
swering the age-old question, "What is the location of Earth in the universe?"

At the end of this historical episode, astronomers had Kepler's laws to de-
scribe how the planets in the solar system moved; however, they had no idea of
why planets behaved the way they did. In essence, they had completed the first

off
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two steps of the scientific method—observation and pattern identification—that
we describe in Chapter 1. But the next step, leading to a fundamental theoreti-
cal understanding of the sky, had yet to be taken. Kepler's laws, as important as
they are, give no insight into the basic mechanisms that make the solar system
operate. The answer to that question was to come from an unexpected source.

4111 T H E  B I R T H  O F  M E C H A N I C S  A N D
E X P E R I M E N TA L SCIENCE: G A L I L E O  GAL ILE I

Mechanics is an old word for the branch of physics that deals with motions of
material objects. A rock rolling down a hill, a ball thrown into the air, and a sail-
boat skimming over the waves are all fit subjects for mechanics. For sixteenth-
century military leaders concerned with the behavior of cannonballs and other
projectiles, mechanics was a science of practical interest. Since ancient times,
philosophers had speculated on why objects move the way they do, but it wasn't
until about 1600 that our modern understanding of the subject began to emerge.

The Italian physicist and philosopher Galileo Galilei (1564-1642) was in
many ways a forerunner of the twentieth-century scientist. A professor of math-
ematics at the University of Padua, he quickly became an advisor to the power-
ful court of the Medici at Florence as well as a consultant at the Arsenal of Venice,
the most advanced naval construction center in the world at that time. He in-
vented many practical devices, such as the first thermometer, the pendulum clock,
and the proportional compass that draftsmen still use today. Galileo gained fame
as the first person to observe the heavens with a telescope, which he built after
hearing of the instrument from others. He was the first to see many astronomi-
cal phenomena, including the moons o f  Jupiter (now called the "Galilean
moons"), craters and other surface features of Earth's Moon, and sunspots.

From the scientist's point of view, Galileo's greatest achievement was his
work on experimental technique. You can see why by considering his research
on the behavior of objects thrown or dropped on the surface of the Earth—work
that we discuss in more detail next. Greek philosophers had taught the reason-
able idea that heavier objects must fall faster than light ones, because the

What Galileo saw through
his telescopes and what
we can see today. (a) Tele-
scopes: Left, telescopes
built and used by Galileo;
right, the Kech Observa-
tory Mauna Kea, Hawaii,
has twin 394-inch tele-
scopes. (a)

L i
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(b)

(

(d)

What Galileo saw through his telescopes and
what we can see today. (b) Craters on the Moon:
Left, some cratering is visible from Earh; right,
close-up views taken from orbit around the Moon.
(c) Sunspots: Left, sunspots are visible in reflected
images of the Sun; right, close-up view of an
Earth-sized sunspot, taken from a satellite orbiting
the Sun. (d) Moons of Jupiter: Left, four major
moons are visible in a common telescope; right,
lo and Europa viewed in front of Jupiter, as seen
by the Voyager spacecraft.

heavier ones want to get to the center of the Earth (and of the universe) more
than lighter ones. In a series of classic experiments, Galileo showed that this idea,
as reasonable as it may seem, was not correct. In the process, he demonstrated
that at the surface of the Earth, all objects fall at the same rate.

Physics in the Making
The Heresy Trial o f  Galileo
Galileo is famous for the wrong reason. Despite the fact that he was a founder
of modern experimental science and was the first to make a systematic survey
of the sky with a telescope, he is remembered primarily because of his trial in
1633 on suspicion of heresy.

Galileo published a summary of his telescopic observations in a book called
The Starry Messenger. This book was written in Italian, the language of common
people, rather than Latin, the language of scholars. Thus Copernican ideas, in-
cluding the disturbing concept that the Earth is not the center of the universe,
became available to the educated public. Some readers complained that these
ideas violated Church doctrine and, in 1616, Galileo was called before the Col-
lege of Cardinals. What happened at this meeting is not clear. The Church later
claimed that Galileo had been warned not to discuss Copernican ideas unless he
treated them, as Copernicus had, as a hypothesis. Galileo, on the other hand,
claimed he had not been given any such warning.
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A painting of the trial of
Galileo.

In any case, the situation remained in this un-
settled state until 1632, when Galileo published
a book called A Dialogue Concerning Two World
Systems, which was a long defense of the Coper-
nican system. This publication led to the famous
trial, in which Galileo excused himself of charges
of heresy by denying that he held the views in his
book. He was already an old man by this time,
and he spent his last few years under virtual
house arrest in his villa near Florence.

The legend of the trial of Galileo, in which a
rigid hierarchy crushes an earnest seeker after
truth (as in Bertoldt Brecht's play Galileo), bears
little resemblance to the historical events. The
Catholic Church had not banned Copernican

ideas; indeed, seminars on the Copernican system were given at the Vatican in
the years before Galileo. Furthermore, Galileo's arguments in favor of the sys-
tem were not very convincing. For example, much of the Dialogues is taken up
by a completely incorrect discussion of the tides and Galileo had no convincing
answers for why things fall if the Earth is not the center of the universe or why
we don't notice any effects of the Earth's motion if it moves. His confrontational
tactic of putting the Pope's favorite arguments into the mouth of a foolish char-
acter in the book brought a predictable reaction that earlier, more reasonable
approaches had not. As often happens, under close inspection the simple myth
associated with an historical event dissolves into something much more complex.

A footnote: In 1992, the Vatican reopened the case and, in effect, issued a
retroactive not guilty verdict in the case of Galileo. The grounds for the rever-
sal were that the original judges had not separated questions of faith from ques-
tions of scientific fact. •

DESCRIBING MOTION
To lay the groundwork for understanding Galileo's study of moving objects, we
have to begin with precise definitions of three familiar terms: speed, velocity, and
acceleration. These terms are of basic importance throughout all areas of physics
and we will use them often. We also note that these and many other terms com-
mon in everyday language are used in physics with precise definitions. Usually
the definitions are not very different from what you would expect from their
common use, but sometimes there are important differences. You need to be
aware of these differences when you talk about the concepts of physics and try
to explain how they apply in the world around us.

Speed
Speed is one of the many everyday words that has a precise definition in physics.

1. In words:
Speed is the distance an object travels divided by the time that it takes to
travel that distance.
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2. In an equation with words:

Speed = Distance traveled
Time of travel

3. In an equation with symbols:
ds = —t

where s is speed, d is distance traveled, and t is time of travel. This direct
relationship between speed and distance is illustrated in graphical form in
Figure 3-8. If you know the distance traveled and the time elapsed during the
travel, you can calculate the speed.

From time to time we will need to use two variations of this equation. First, if
you know the average speed, s, of an object and the time of travel, t, you can cal-
culate how far the object has traveled, d:

Distance traveled = Average speed X Time of travel
or d = s X t
Second, if you know the total distance traveled and the average speed of travel,
you can calculate how long the journey takes:

Distance traveledTime of travel = Average speed
dor t  = —s

D r i v i n g  Yo u r  C a r
If the speedometer on your car reads a constant 50 kilometers (31 miles) per
hour, how far will you go in 15 minutes?

REASONING AND SOLUTION: We are given a speed and a time and we want to find
a distance. We can apply the equation that relates time, speed, and distance in
the form:

Distance traveled = Average speed x Time of travel
However, this question also involves changing units. First, we must know the
travel time in hours:

15 minutes  1
60 minutes/hour =  4 hour

Then, using the relationship between distance and time given, we find:

Distance = 50 kilometers/hour X —4 hour
= 12.5 kilometers (7.7 miles)

Your car will travel 12.5 kilometers (or 7.7 miles) in 15 minutes. •

A word about units: You may have noticed that in Example 3-2 we put
7, hour into the equation for the time instead of 15 minutes. The reason we did

C

0

Time

FIGURE 3-8. Graph of the
distance traveled by an ob-
ject moving at a constant
speed.
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this was that we needed to be consistent with the units in which an automobile
speedometer measures speed. Since the speedometer dial reads in kilometers (or
miles) per hour, we also put the time in hours to make the equation balance. A
useful way to deal with situations such as this is to imagine the units are quan-
tities that can be canceled in fractions, just like numbers. In this case, we have:

Distance = kilometers/hour x hour
= kilometers

If, however, we put the time in minutes, we'd have:
Distance = kilometers/hour x minutes

and there would be no cancellation.
Whenever you do a problem like this, it's a good idea to check to make sure

the units come out correctly. This important process is known as dimensional
analysis.

Velocity
Velocity has the same numerical value as speed, but it is a vector quantity that
also includes information about the direction of travel (see Chapter 2). The speed
of a car might be 40 kilometers per hour, for example, while the velocity is
40 kilometers per hour due west. Velocity and speed are measured in units of
distance per time, such as meters per second, feet per second, or miles per hour.

Acceleration
Acceleration measures the rate of change of velocity.

1. In words:
Acceleration is the change in velocity divided by the time it takes for that
change to occur.

2. In an equation with words:
Final velocity — Initial velocityAcceleration — Time

3. In an equation with symbols:
Ava = —t

where i v  indicates the change in velocity. Like velocity, acceleration requires
information about the direction and is therefore a vector.

When velocity changes, it may be by a certain number of feet per second
or meters per second in each second. Consequently, the units of acceleration
are meters per second per second, usually described as meters per second
squared (and abbreviated m/s2), where the first meters per second refers to the
velocity, and the last per second refers to the time it takes for the velocity to
change.
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To understand the difference between acceleration and velocity, think about
the last time you were behind the wheel of a car, driving along a straight high-
way and glancing at your speedometer. If the needle is unmoving (at 50 kilo-
meters per hour, for example), you are moving at a constant speed. Suppose,
however, that the needle isn't stationary on the speedometer scale (perhaps be-
cause you have your foot on the gas pedal or on the brake). Your speed is chang-
ing and, by our definition, you are accelerating. The higher the acceleration, the
faster the needle moves. If the needle doesn't move, however, this doesn't mean
you and the car aren't moving. As we have seen, an unmoving needle simply
means that you are traveling at a constant speed without acceleration. Motion
at a constant speed in a single direction is called uniform motion.

Deceleration
If you're driving a car and step on the brakes, the car slows down, or decelerates.
This process involves a change in velocity, so it is actually acceleration. We use
deceleration in everyday speech because we normally associate the term accel-
eration with speeding up. If you look at the definition of acceleration, however,
you will notice that if the final velocity is less than the initial velocity (which is
what happens when you step on the brakes), the acceleration is a negative num-
ber. So deceleration is simply a negative acceleration.

Average and Instantaneous Velocity
While it is fairly straightforward to measure speeds and velocities for objects
that aren't accelerating, measuring becomes more complicated when objects ac-
celerate. If your speedometer needle climbs steadily from 30 to 40 kilometers
per hour, the speed of your car is constantly changing. At no point during this
time interval is speed (or velocity) a constant. So how do we deal with objects
whose speed is changing? How do we answer the question "How fast is it mov-
ing right now?"

To tackle this problem we need to make a distinction between average ve-
locity and instantaneous velocity. The average velocity is simply the total distance
traveled divided by the total time it takes to travel that distance. If the distance
is a meter and it takes a second to travel that distance, then the average veloc-
ity is one meter per second.

Instantaneous velocity, on the other hand, is the velocity at a specific time.
We can determine the instantaneous velocity of an accelerating object by think-
ing of the process this way: Suppose you had marked out a short distance on the
pavement—a few feet, for example, or even a fraction of an inch. As the accel-
erating object goes by, you can time how long it takes to cross that small dis-
tance. If the time interval is short enough, the velocity won't change very much
as the object crosses the small distance. You can think of the instantaneous ve-
locity as the average velocity measured over a very small time interval. (This con-
cept is explored numerically in Example 3-3 on page 73.)

For the record, what is actually measured in your car's speedometer is the time
it takes a particular gear in the transmission to make one revolution. When the car
moves a known distance forward, this gear turns once. The number of turns it
makes is eventually translated into the number displayed on your speedometer.
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Physics i n  t h e  M a k i n g
Measuring Time Without a  Watch
In our age of stop watches, digital timers, and atomic clocks, with Olympic races
routinely measured to a hundredth or even a thousandth of a second, it's hard
to imagine measuring time without an accurate instrument. But when Galileo
set out to study accelerated motion in the 1600s, measuring time was a formi-
dable technological challenge. Think about how you might determine small time
intervals if all you had was a clock that ticked off seconds but could record no
shorter times.

Galileo wanted to document as accurately as possible the way falling objects
II accelerate, but these measurements required knowledge of both distance and

time. Since objects that fall straight down moved much too fast for him to mea-
sure, he devised an experiment in which balls rolled down a gently inclined plane.
However, even these balls moved too fast to time with available clocks (see
Figure 3-9).

Galileo tried a variety of different methods to measure these small incre-
ments of time. He experimented with his own heartbeat, but his pulse proved
too irregular. He tested rapidly swinging pendulums, but they were difficult to
start and stop precisely. He had more success measuring the weight of water that
accumulated when a steady flow was started and stopped to coincide with the
period of an object's fall, but irregularities in the flow and uncertainties in start-
ing and stopping the water limited the accuracy of that method.

Galileo's most ingenious solution for measuring time intervals relied on his
musical training. Galileo stretched lute strings across the rolling ball's path, so
that there was a discernible twang when the ball passed over the string. He then L . )
adjusted the distance between the strings until he heard the notes coming at pre-
cisely equal intervals. A musician with a good ear can tell if notes in a series are
off by as little as second. Thus, even though he did not have clocks capable of
measuring time intervals better than a second or so, with this scheme he could
be certain that several very short time intervals were the same.

When Galileo got the time intervals between twangs just right, he measured
the distances between lute strings. He found that if a ball had traveled 1 inch in
the first twang, then it traveled 4 inches by the end of two twangs, 9 inches by

Galileo's apparatus: inclined plane

Time Distance

Distance (inches)

0

12

24

36
0 1  2  3  4  5  6

Time (seconds)

FIGURE 3-9. Galileo's falling-ball apparatus, with a table of measurements and a graph
of distance versus time.
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the end of three twangs, 16 inches by the end of four twangs, and so on. In other
words, he found that the distance traveled by an accelerating object depends on
the square of the time, not just on the time itself.

Modern versions of the rolling ball experiment, relying on laser beams and
electronic timers, have greatly improved the accuracy of Galileo's experiment,
but they produce exactly the same result. •

10 RELATIONSHIPS A M O N G  DISTANCE,
VELOCITY, A N D  ACCELERATION

The Velocity of  an Accelerating Object
Galileo's experiments revealed a simple relationship between an object's accel-
eration and the distance it travels.

1. In words:

When an object is accelerated in a uniform way from a standing start, the
distance it covers in a given time depends on the square of the time.

2. In an equation with words:

Distance traveled = —2 X Acceleration X Time2

3. In an equation with symbols:

d = —2 at2

This relationship between the distance traveled and time can also be represented
in a graph, as shown in Figure 3-10. This is the same kind of graph that we show
in Figure 2-8 for a squared relationship.

Suppose that at the instant the object starts accelerating (time equals zero),
the velocity is also zero, but the object begins to accelerate at a uniform rate. In
this case, the instantaneous velocity of the falling body is given by:

1. In words:

The instantaneous velocity of a uniformly accelerating object that started at
rest equals the acceleration multiplied by the total time of acceleration.

2. In an equation with words:

Velocity = Acceleration x Time

3. In an equation with symbols:

v = a X t

The direct relationship between the velocity and time of travel for a given dis-
tance is illustrated in Figure 3-11.

CrC

Time

FIGURE 3-10 .  Graph of  the
distance traveled by a uni-
formly accelerating object.

i )

Time

FIGURE 3-1 1 . Graph of the
velocity of a uniformly accel-
erating object.
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The relationships among distance, time, velocity, and acceleration enable you
to calculate a lot of information about an object's motion from some simple mea-
surements you can make with a ruler and a stop watch. The thing to remember
is that during motion with uniform velocity, the distance covered is the average
velocity multiplied by the elapsed time; however, during accelerated motion,
the distance covered is the acceleration multiplied by one-half the square of the
elapsed time. Example 3-3 at the end of the chapter shows how to use these equa-
tions to analyze the motion of a sprinter.

FIGURE 3-12. Galileo did
his experiment by rolling a
ball down an inclined plane.
The steeper the angle of the
plane, the faster the fall. A
plane at a right angle to the
ground corresponds to a
freely falling object.

Connection
The Evolution o f  Speed

A hallmark of advancing technology is an increase in speed. Year by year, cars
and planes are faster, computers are faster, medical procedures are faster—even
food service is faster (most of the time).

Thousands of years ago humans learned to increase their natural speed by
domesticating and riding horses. The top human speed in modern times is about
22 miles per hour in a sprint or 16 miles per hour in a 1-mile run. But racehorses
can run over 35 miles per hour in a *mi le  run. People on horseback could hunt
animals such as buffalo for food and escape other predators such as wolves.
Greater speed meant improvements in life.

By the nineteenth century, machines surpassed horses in speed. Around 1830,
Peter Cooper's steam-engine locomotive, the Tom Thumb, pulled ahead of a
horse-drawn carriage pulling the same load in a race, but broke down before the
end and the horse won. Journalists of the time speculated about the dangers to
the human body of such high speeds as 60 miles per hour, but by 1860, railroads
had expanded across the country. Their ability to carry huge amounts of freight
changed the world's economy. Today, of course, freight trains are still a com-
monplace, but land speed belongs to the passenger trains. High-speed bullet trains
in France and Japan routinely cruise at 175 miles per hour between cities.

Automobiles powered by steam engines were developed as early as the eigh-
teenth century, but were not practical. True land vehicles that did not run on rails
had to wait until the development of the internal combustion engine, patented
in 1879. Within a few decades, some commercial automobiles could exceed 100
miles per hour on the open road.

However, the true kings of speed are airplanes. The Wright brothers' first
airplane flight in 1903 lasted 12 seconds and covered 120 feet. Five years later
they were flying 10 miles at a stretch at average speeds of 40 miles per hour. To-
day, planes can fly more than three times faster than the speed of sound. The
SR-71 Blackbird, the fastest vehicle ever built other than spacecraft, has achieved
speeds of almost 2200 miles per hour and is one of the great achievements of
modern technology. (See Looking at Speed on page 65.) •

Acceleration d u e  t o  Gravi ty
In Galileo's experiments, he produced greater accelerations by increasing the an-
gle of the incline down which the balls rolled (Figure 3-12). Eventually, at very
steep angles, the motion of the balls became too fast to measure the time inter-
vals. In our everyday lives, most falling objects fall straight down, equivalent to
a plane tilted at an angle of 90 degrees.

oir

LIO



You can probably walk much faster than a tortoise, but you wouldn't want to race against a cheetah.
Not unless you drove in a car, which could easily pass any animal, or in a jet plane, which is faster
than anything other than spacecraft. And speaking of spacecraft, some probes have been launched to
take close-up looks at comets, which can move far faster than anything on Earth.

104 m/s

Giant tortoise,
about 0.11
meter/second
(0.25 miles/h)

105 m/s

Comet West, about
45,000 meters/second
(100,000 miles/h)

10' m/s

Cheetah, about 31 meters/second
(70 miles/h)

102 m/s

Race car, about 90 meters/second
(200 miles/h)

SR-71 Blackbird jet, about 1100 meters/second
(2500 miles/h)
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You can verify that there is an acceleration involved by dropping an object
and watching it fall. Notice that at the instant you release the object it barely
moves. Can you see that it's moving faster at the end of its fall than at the
beginning?

The acceleration of a freely falling body is so important that physicists give
it a special name, acceleration due to gravity, and assign it a special letter, g.
Galileo's experiments led him to the hypothesis that any object dropped near
the Earth's surface, no matter how heavy or light, falls with exactly the same con-
stant acceleration. In the absence of complications such as air resistance or wind,
which may slow down or alter the direction of a falling object, it makes no dif-
ference how massive an object is—all objects experience exactly the same ac-
celeration. (In Chapter 4 you will learn why this is so.)

The numerical value of g can be determined by measuring the actual mo-
tion of objects. The modern value of g is given by:

•  1.

FIGURE 3-13.  A  multiple-
exposure photograph cap-
tures the accelerated motion
of a falling apple. In each
successive time interval, the
apple falls farther.

g = 32 feet/s2 = 9.8 m/s2

The velocity of a falling object is given by:

Velocity of a falling object = g X Time

These equations tell us that in the first second, a falling object accelerates from
a stationary position to a velocity of 9.8 m/s (about 22 miles per hour) straight
down. After two seconds, the velocity doubles to 19.6 m/s; after three seconds, it
triples to 29.4 m/s, and so on.

Ironically, Galileo probably never performed the one experiment for which
he is most famous—dropping two different weights from the leaning Tower of
Pisa to see which would land first. Had he done so, in fact, the effects of friction
between the air and the falling bodies probably would have slowed the lighter
one slightly more than the heavier object, so that the two would have been per-
ceived to fall at slightly different rates.

• Develop Your Intuit ion:  Freely Fall ing Objects
,1 According to Galileo's results, every object at the surface of the Earth,

 o n c e  released, should accelerate downward at the same rate (Figure
3-13)  But we know that if a leaf and an acorn fall from a branch at the same
time, the acorn reaches the ground well before the leaf, even if they have equal
mass. Was Galileo wrong?

To understand this problem, think for a minute about how the leaf and
the acorn fall. The acorn plummets straight down to the ground, accelerating
as it goes. The leaf, on the other hand, flutters down slowly. It appears that the
air has a much greater effect on the leaf than on the acorn. The acorn, being
compact, has a much smaller resistance relative to its weight exerted on it by
the air than does the leaf. In fact, if we repeated this experiment on the Moon
(where there is no air) or in a tube from which air has been removed, the leaf
would not flutter and the two objects would fall at exactly the same rate. (This
experiment has actually been done, both on the Moon and in a vacuum tube,
with a feather and a rock. Both reached the ground at the same time.)

41111,

U
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110 MOVEMENT IN  TWO DIMENSIONS:
THE L AW  OF COMPOUND MOTION

Until now, we have talked only about motion along a straight line—called motion
in one dimension. However, if you throw a baseball or ride in a car on a highway,
you experience motion in more than one dimension. The baseball, for example,
follows an arching path as it travels forward. The car goes around turns as well as
moving ahead. In Galileo's time, analyzing the motion of projectiles such as base-
balls was particularly important because the cannon had just been introduced into
warfare, and cannonballs, like baseballs, move in two-dimensional arcs.

The central question in analyzing two-dimensional motion is this: how does
the motion in one direction affect motion in the other dimension? For example,
when a baseball is thrown, does its speed in the horizontal direction affect how
high it goes? Galileo proposed what we now call the law of compound motion.
It states that:

Motion in one dimension has no effect on motion in another dimension.

Projectile Mot ion  f l i t t V
Let's look at an example of projectile motion to see how this law works. Suppose
you stand on a high cliff and throw a rock outward, as shown in the graph of
Figure 3-14. The law of compound motion tells us that we should think of the rock's
path as being made up of two separate parts or components. In the horizontal di-
rection, the rock moves at a constant velocity imparted to it by your hand. In the
vertical direction, the rock accelerates downward like any other falling object.

Suppose, for example, that the rock is moving 12 meters per second in the
horizontal direction. At the end of 1 second, the rock is 12 meters from the cliff.
At the same time, however, the rock is falling with an acceleration of 9.8 meters
per second per second, so at the end of 1 second it is 4.9 meters down (remem-
ber, distance = z ate, where in this case a = g = 9.8 m/s2). The rock's position,
then, is 12 meters out and 4.9 meters down, as shown in Figure 3-14. A second
later, it is 24 meters out and 19.6 meters down, and so on. The path, illustrated
in Figure 3-15, is called a parabola.

The law of compound motion also applies to projectiles thrown up from the
ground, such as a baseball hit by a bat or a football thrown or kicked by a player.
In this case, the vertical motion of the ball is an ever-slowing motion upward,
followed by a fall like that in Figure 3-14 (if the effects of wind are negligible).
The horizontal motion is, as in Figure 3-14, movement at a constant velocity.
The combination is an arc, also in the shape of a parabola, that begins at the
ground, goes up to the peak in a path that is the mirror image of that in Figure
3-14, and then goes back to the ground exactly as in Figure 3-14.

Physics in  t h e  M a k i n g
The Range of  a Cannonball

The distance a projectile travels before it comes back to the ground is called its
range. In the fifteenth century, when cannons were first being introduced into the
military affairs of Europe, finding the range of a cannonball was of more than
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FIGURE 3-14. The trajectory
of a rock thrown off a cliff.
The motion in the horizontal
direction is independent of
the motion in the vertical
direction.

Vertical distance

FIGURE 3-15 .  An object
thrown upward at the Earth's
surface follows an arching
path, called a parabola.
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academic interest. The Duke of Milan, having acquired some cannons, wanted to
know how to get the maximum range from his new purchases. He called in his
chief engineer, a man named Tartaglia (The Stutterer), and told him to find out
how to do it. What followed was one of the earliest episodes of the new experi-
mental method in science.

The prevailing thought about projectiles at the time, following the teachings
of Aristotle, was that motion could be divided into two classes: natural motion,
in which an object followed its natural inclination to fall toward the center of
the Earth, and violent motion, which was imposed by an outside agency such as
gunpowder. Scholars believed that a cannonball would move off in a straight line
until the violent motion was expended and then fall straight down. They, like
Aristotle, arrived at this conclusion by simply thinking about the situation.

Tartaglia, on the other hand, took a different approach. He went out to a
field outside Milan and shot off cannonballs, noting the distance the ball went
for different elevations of the barrel and different gunpowder charges. He was
the first person to realize that the maximum range occurs when the projectile
leaves the ground at an angle of 45 degrees. (This is true in the absence of air
resistance. The maximum range with air resistance requires a slightly smaller
launch angle above the ground; for example, 43 degrees for a baseball, 38 de-
grees for a golf ball.) More important, however, Tartaglia showed that observa-
tion and experiment were an essential piece of the scientific method. •

Velocity

Centripetal
acceleration

FIGURE 3-16.  The accelera-
tion of an object moving in a
circle. The object moves at
the same speed, and only
the direction changes.

Motion in a Circle
The motion of an object moving in an arc or circle presents a more difficult chal-
lenge to analyze than a batted baseball or a rock thrown from a cliff. The basic prob-
lem is that when we look at the regular motion of an object moving in a circle at
constant speed, our first impression may be that it is not accelerating. But it is!

If you have difficulty envisioning this acceleration, you are in good company.
Many famous scientists, including Galileo, tried to work out the properties of
uniform circular motion and failed. But recall from the definition of velocity that
velocity involves both speed and direction. The ordinary kind of accelerated mo-
tion we discuss earlier, such as stepping on your car's gas pedal or brake, involves
a change of speed without a change of direction. We have no difficulty recog-
nizing this motion as acceleration. Uniform circular motion, on the other hand,
involves a change of direction without a change of speed. This, too, changes the
velocity, and therefore requires a compensating acceleration.

Consider a simple example illustrating this point. Imagine holding one end
of a string that has a ball attached to the other end and whirling the ball around
your head (Figure 3-16). You have to pull on the string all the time—you can
feel the tension in your hand. If you let go or if the string breaks, the ball doesn't
keep moving in a circle; it flies off in a straight line tangent to the circle. Just as
your car won't pick up speed unless you keep your foot on the gas pedal, the
ball won't move in a circle unless you keep pulling the string. In both cases, your
actions produce an acceleration.

In fact, the acceleration of an object moving in a circle of radius r with a
velocity whose magnitude (speed) is v turns out to be:

1. In words:
The acceleration of an object moving in a circle is equal to the square of its
speed divided by the radius of the circle.
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2. In an equation with words:
Velocity2Acceleration (centripetal) = Radius

3. In an equation with symbols:
v2

ac = r

Another interesting fact about this acceleration is that it is directed inward
toward the center of the circle, perpendicular to the velocity. (To grasp this point,
remember that when you whirl the ball around your head you are actually pulling
inward on the string.) For this reason, it is called the centripetal acceleration
(which means center-seeking acceleration). We encounter centripetal accelera-
tion again in Chapter 5 when we discuss the orbits of satellites.

With Galileo's work, then, physicists began to isolate and observe the mo-
tion of material objects in nature and to summarize their results in mathemati-
cal relationships. However, why bodies behave this way remained undiscovered.
The man who made this discovery was the great English mathematician and
physicist Isaac Newton, who was born in 1642, the year of Galileo's death. We
discuss Newton's extraordinary contributions in the next two chapters.

T H I N K I N G  M O R E  A B O U T

Our Place in the
Ordered Universe

Gal i leo 's  work and writings had great signifi-
cance in human society beyond their central

importance in science. To understand their impor-
tance, we need to recognize the role of Ptolemy's
Earth-centered solar system and Aristotle's prin-
ciples of physics within the context of the general
culture and religious beliefs of the time.

The Catholic Church held the idea that hu-
mans were the supreme achievement of God's
creation. In the eyes of religious leaders, each per-
son's spiritual salvation was the primary concern
of our life on Earth, far outweighing issues such
as the best model of the solar system. Ptolemy's
model placed our planet at the center of the uni-
verse, which fit with the Church's sense of the im-
portance of humans in God's overall plan. The
Copernican model made Earth just one of several
planets orbiting the Sun, which undermined the
idea of humans' being central to the rest of the
universe. Church leaders feared that such a model

might confuse people and lead to doubt about the
importance of individual salvation. This fear was
not confined to the Catholic Church; both Martin
Luther and John Calvin, who spearheaded the
Protestant Reformation, condemned the Coper-
nican model.

Church views about how the world worked
were based on the explanations of Aristotle, which
by the time of Galileo had been unchallenged for
some 2000 years. Thus, when Galileo's experi-
ments led to conclusions that differed from those
of Aristotle, they also seemed to challenge the
authority of the Church. Galileo reported that
moons orbited the planet Jupiter, but the Church
believed that everything in the heavens revolved
around the Earth. Galileo noted dark spots on the
Sun but, according to Church doctrine, God cre-
ated the Sun as a perfect source of light, without
blemish. Galileo showed that objects of different
mass fell at the same rate, but religious philoso-
phers, following Aristotle's teaching, said that
heavier objects fell faster so as to reach the cen-
ter of the Earth, and thus the center of the uni-
verse, more quickly.
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Galileo did recant his discoveries, thus avoid-
ing the fate of Giordano Bruno, who did not re-
nounce his belief in the Copernican model and
was burned at the stake in 1600. But the Church
was fighting a losing battle. By the nineteenth cen-
tury, not only was the Copernican model of  the
solar system considered as established fact, but it
was beginning to be recognized that the Sun is

Summary

simply a star, not essentially different from other
stars in the sky except for its proximity.

Galileo's troubles arose because his research
challenged the prevailing mores of his day. Under
what circumstances should society at large restrict
the research activities of scientists? What research
topics are considered immoral or  illegal today?
Who should decide these limits?

Since before recorded history, astronomers have observed
regularities in the heavens and have built monuments such
as Stonehenge to help establish order in their lives. Models,
such as the Earth-centered system of Ptolemy and the Sun-
centered system of Copernicus, attempted to explain these
regular motions of stars and planets. Astronomers such as
Tycho Brahe made ever more precise measurements of star
and planet positions. These data led mathematician Johannes
Kepler to propose his laws of planetary motion, which, among
other things, state that planets orbit the Sun in elliptical or-
bits, not circular orbits as had been previously assumed.

Meanwhile, Galileo Galilei and other scientists investi-

Key Terms

gated the science of mechanics, which is the study of how
objects move near the Earth's surface. These workers rec-
ognized two fundamentally different kinds of motion: uni-
form motion, which means constant speed and direction
(velocity), and acceleration, which entails a change in either
speed or direction of travel. Galileo devised experiments to
study falling objects, and he discovered that all things fall
with the constant rate of acceleration of 9.8 meters per sec-
ond per second, which is called the acceleration due to grav-
ity (g). He also discovered the law of compound motion,
which states that the motion in one dimension has no effect
on motion in another dimension.

acceleration The change in velocity divided by the time it
takes for that change to occur. Acceleration can involve
changes of speed, changes in direction, or both. (p. 60)

acceleration due to gravity (g) The velocity change of a
freely falling body at the Earth's surface. (p. 66)

Kepler's laws of planetary motion Three basic
mathematical statements about the solar system: Kepler's
first law of planetary motion states that the planets have
elliptical orbits with one focus at the Sun; Kepler's second
law says that for a given time interval, the swept-out area is
the same, no matter where the planet is in its orbit; Kepler's
third law expresses the relationship between a planet's
distance from the Sun and its period as a simple equation
that allows scientists to predict the behavior of orbiting
objects. (p. 53)

Key Equations
DistanceSpeed = Time

law of compound motion Galileo's proposition that motion
in one dimension has no effect on motion in another
dimension. (p. 67)

mechanics The branch of physics that deals with motions of
material objects. (p. 56)

speed The distance an object travels divided by the time that
it takes to travel that distance. (p. 58)

uniform motion Motion at a constant speed in a single
direction. (p. 61)

velocity A vector quantity that has the same numerical value
as speed but also includes information about the direction
of travel. (p. 60)

Final velocity — Initial velocity
Acceleration = Time
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For an object starting at rest and experiencing constant acceleration:

Distance = Z x Acceleration X Time2

Velocity of falling object =  g x Time

Acceleration due to gravity = g = 9.8 meters/second2

For an object in circular motion:

Velocity2
Acceleration = Radius

Review

r"

1. How d id  Stonehenge al low ancient people t o  make
predictions?

2. Why do scientists argue that ancient astronauts did not
build Stonehenge?

3. What are the characteristic movements of some of the ob-
jects you see in the night sky?

4. Describe the main features of the Ptolemaic and Coperni-
can systems of the universe. In what ways are they similar?

5. What did Tycho Brahe try to do to resolve the question of
the structure of the universe?

6. What was Kepler's role in interpreting Tycho Brahe's data?
7. What is Kepler's first law of planetary motion? What as-

sumption of the Copernican system did this law refute?
8. What is Kepler's second law of  planetary motion? Ac-

cording to this law, at what point in its orbit does a planet
move fastest?

9. What is Kepler's third law of planetary motion? Given this
law, what are the relative lengths of the year for Earth,
Venus (next closest planet to the Sun), and Mars (next far-
thest away planet from the Sun)?

10. How are the works of Tycho Brahe and Kepler an exam-
ple of the scientific method?

Questions

11. What is mechanics? Provide an example of an event that
might be studied by this discipline.

12. What new observations did Galileo make with his tele-
scope? Why were these discoveries controversial?

13. Define speed. How can you calculate speed from a known
distance traveled and time of travel?

14. What is the difference between speed and velocity?

15. Define acceleration. How can you tell if your car is accel-
erating by looking at the speedometer?

16. What is instantaneous velocity?

17. What two quantities did Galileo have to measure in his
rolling ball experiment? How might you improve on his
experiment using modern technology?

18. How did Galileo slow down the rate at which objects fall
in the laboratory?

19. How did Galileo measure time?

20. Why is the measurement of time important in mechanics?

21. How are Galileo's experiments in mechanics examples of
the scientific method?

22. What is g?

1. The asteroid belt is a large collection of rocks and boul-
ders that lies about three times as far from the Sun as the
Earth does. How long is the orbital period, or year, for one
of these rocks?

2. Which of the following objects are in uniform motion and
which are in accelerated motion? Explain each response.
a. A  car heading north at 35 mph
b. A  car going around a curve at 50 mph

c. A  dolphin leaping out of the water
d. A n  airplane cruising at 30,000 feet at 500 mph
e. A  book resting on your desk
f. The Moon

3. People who put oversized wheels on their cars often find
that their actual speed is significantly greater than the
speedometer indicates. Can you explain why this is so?
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4. A  planet orbits the Sun in an elliptical orbit (see figure).
The distance along the orbit from A to B is the same as
the distance from C to D. Compare the time it takes the
planet to move from A to B to the time it takes the planet
to move from C to D. Explain your reasoning.

5. Suppose two different moons, X and Y, follow the same el-
liptical orbit around a planet. Which moon is moving faster
according to the figure? Will the faster moon ever catch up
to the slower one? Explain.

X

6. B y  extending the logic used to define instantaneous veloc-
ity, define instantaneous acceleration.

7. Consider a comet with a very elongated, elliptical orbit
around the Sun. Using Kepler's three laws of motion, de-
scribe the speed of the comet as it orbits the Sun.

8. Astronomers investigating other solar systems have found
many systems in which the planets have very elongated,
elliptical orbits, rather than almost circular orbits as in our
own system.
a. Does the existence of highly elliptical orbits for plan-

ets violate Kepler's laws? Why or why not?
b. What effect do you think a highly elliptical orbit might

have on the chances o f  the planet developing life?
(Hint: What would happen to Earth's oceans i f  the
planet spent time far away from the Sun?)

9. A s  you drive north on the highway at 65 miles per hour,
the cars in the opposing lane are traveling south at 65 miles
per hour. Do the cars in the opposing lane have the same
speed as you do? Do they have the same velocity? Explain.

10. Unfortunately, your car has developed an oil leak. One
drop of oil falls from your engine every 3 seconds, leaving
a trail of oil drops on the road. In the figure are four pat-
terns of oil drops you've left over the same 200-meter
stretch of road. For which one(s) is your car accelerating?

For which one(s) is your car moving at a constant speed?
For which one is your average speed the greatest?

200 meters
A •  •  •  •  •
B
C • •
D

•  •  •  • •

11. Unfortunately, your car has developed an oil  leak. One
drop of oil falls from your engine every 3 seconds, leaving
a trail of oil drops on the road. In the figure are two pat-
terns of  oil drops you've left over the same 200-meter
stretch of road. In which case do you achieve the highest
instantaneous speed? In which case do you have the high-
est average speed? In which case do you achieve the great-
est instantaneous acceleration (acceleration at a specific
point)?

200 meters - ) . - 1
A • •  •  •
B • • • • •  •

12. Is it possible for your speed to be zero when your accel-
eration is not zero? Explain.

13. A  bowling ball and a volleyball are dropped at the same
time from the top of a tall building. Neglecting air drag,
which one will hit the ground first? Would your answer
change if we did not neglect air resistance? How?

14. A  cannon fires a shot from a high cliff as shown in the fig-
ure. Where in the cannonball's trajectory is its acceleration
the greatest, A, B, C, or D? Where is its speed the greatest?
Where is its speed 0? Is its acceleration ever 0? If so, where?

B

A
•C

D

15. You roll a ball off a horizontal tabletop. In which case will
the ball take longer to hit the floor: i f  it is moving fast or
if it is moving slowly? Explain.

•
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16. Two balls roll off a horizontal tabletop. One is moving fast
and one is moving slowly. Which one hits the ground with
a higher speed? Explain.

17. A  race car driver is driving on a circular track. If he dou-
bles his speed, how much greater will his centripetal ac-
celeration be? What if he triples his speed?

18. A  car is rounding a corner on an cold winter day. If the
road suddenly turns to ice (at the X in the figure), where
will the car run off the road?

Problem-Solving Examples

O u t  o f  t h e  Blocks
A sprinter accelerates from the starting blocks to a speed
of 11 meters per second in 1.5 seconds. Answer the fol-
lowing questions about the sprinter's speed, acceleration,
time, and distance run. In each case, answer the question
by substituting into the appropriate motion equation.

1. What is his acceleration?

SOLUTION: Acceleration is defined as the change in ve-
locity divided by the time interval of that change.

Final velocity -  Initial velocity
Acceleration = Time

In this case, the sprinter starts from rest at the begin-
ning of the race, so his initial velocity is 0.

11 meters/second
Acceleration = 1.5 seconds

= 7.3 m/s2

2. How far does the sprinter travel during this acceleration?

SOLUTION: We saw from Galileo's experiments that
distance traveled is proportional to the square of the
time interval.

Distance = z X Acceleration X Time2

= 2  x (7.3 m/s2) X (1.5 s)2

= 8.2 meters

3. How fast is the sprinter going when he's halfway
through the period of acceleration?

SOLUTION: This question asks for the runner's instan-
taneous velocity. We can find it from the values of the
acceleration (7.3 m/s2) and the time interval (0.75 s).

Instantaneous velocity = Acceleration x Time

At second, his instantaneous velocity is

Velocity = 7.3 m/s2 x 0.75 s
= 5.5 m/s

4. How far has the sprinter traveled in the first 0.75 second?

A sprinter
gets a fast
start by
pushing off
from angled
blocks.

SOLUTION: This question is the same as part 2 but over
a different time interval.

Distance = 2 x Acceleration x Time2

= i  x (7.3 m/s2) x (0.75 s)2

= a X (7.3 m/s2) x 0.56 s2
= 2.05 m

Notice that halfway through the 1.5-second period of
acceleration the sprinter has not covered half of the
8.2 meters (see part 2). This feature is common to ac-
celerated motion. The sprinter moves much faster and
farther during the second half of the period of accel-
eration and therefore covers more ground.

5. Assuming the sprinter covers the remaining 91.8 me-
ters at a constant speed of 11 m/s, what will be his time
for the event?
SOLUTION: We have already calculated that the time to
cover the first 8.2 meters is 1.5 seconds. The time re-
quired to cover the remaining 91.8 meters at a constant
velocity of 11 meters per second is

Distance
Time - Velocity

91.8 m
11 m/s

= 8.35 s
Thus, T o t a l  time = 1.5 + 8.35 = 9.85 seconds
For reference, the world record for the 100-meter dash,
set by Tim Montgomery of the United States in 2002,
is 9.78 seconds. •
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Dropping a  P e n n y
from t h e  Sears To w e r
The tallest building in the United States is the Sears Tower
in Chicago, with a height of 443 meters (1454 feet). Ig-
noring wind resistance, how fast would a penny dropped
from the top be moving when it hit the ground?

REASONING: The penny is dropped with 0 initial velocity.
We first need to calculate the time it takes to fall 443 me-
ters. From this time we can calculate the velocity at impact.

SOLUTION:
Step 1. Time of fall. The distance traveled by an acceler-
ating object is:

Distance = i  x Acceleration X Time2

= x  9.8 m/s2 x t2

= 4.9 m/s2 x t2

The given distance of the fall equals 443 meters, so rear-
ranging gives:

443 m
t2 - 4.9 m/s2

= 90.41 s2

Taking the square root of both sides gives the time of fall:

t = 9.5 s

Step 2. Velocity at impact. The velocity of an accelerating
object is:

Velocity = Acceleration X Time
= 9.8 m/s2 X 9.5 s
= 93.1 m/s

This velocity is about 200 miles per hour- a  high speed
indeed. A penny traveling at such a velocity could easily
kill a person, so don't try this experiment!

In fact, most objects dropped in air do not accelerate
indefinitely. Because of air resistance, an object accelerates
only until it reaches its terminal velocity; and it continues
falling at a constant velocity after that point. The terminal
velocity for a penny is somewhat less than 200 miles an
hour, still fast enough to cause serious injury. We return to
the topic of terminal velocity in Chapter 4, after we have
studied more about force and motion. •

Throwing  a  Ba l l  S t ra igh t  U p
Suppose you throw a ball straight up into the air with an
initial speed of 25 meters per second (about 55 miles per
hour).

1. How high will it go?
2. How long will it take to return to the ground?

REASONING AND SOLUTION:
1. The motion of the ball is the result of two effects: the

velocity, pointing up, and the acceleration, pointing
down. When the ball is thrown straight up, it deceler-
ates because of the effects o f  gravity. I t  moves more
and more slowly as it climbs, until finally it stops and
starts to fall back down. We can use the equation for
the velocity of an accelerating body to tell us how long
it takes for the velocity to be reduced to 0. Then we
can use the equation for the distance traveled by a de-
celerating body to tell us how far it has traveled (and
hence how high it will go).

The velocity of the ball as it moves up is:

Final velocity = Initial velocity + Acceleration x  Time,

At the top of the throw, v = 0, so

0 =  (25 m/s) -  (9.8 in/s2) x  t

and the time it takes for the ball to stop moving up is

25 m/s
t =  -  2.55 s9.8 m/s2

Then, to calculate the distance traveled by the ball in
2.55 seconds, apply the distance equation, making sure
to include the effects of both the velocity pointing up
and the acceleration pointing down:

d = [vo x  t] -  g  X td

= [(25 m/s) x  2.55 s] -  [4 (9.8 m/s2) x  (2.55 s)2]

= 63.75 m -  31.86 m
= 31.89 m

2. There are two ways to determine how long it takes for
the ball to return to the ground. One simple way is to
note that it takes the ball just as long to fall as it did
to climb up, so that the total time o f  flight is 2 x
2.55 seconds, or 5.10 seconds.

The other way is to note that the problem of trac-
ing the ball's path once it starts down is exactly the same
as dropping a ball from rest from a height of 31.89 me-
ters. If we work out how long it takes for the ball to fall
and add it to the 2.55 seconds it took to get to the top of
the throw, we'll have the total time the ball was in the air.

The time it takes a ball to fall 31.89 meters is

d = g  X t2

31.89 m = x  9.8 m/s2 x t2

31.89 X 2
t 2 -  =  6.51 s2

9.8
t = 2.55 s
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Thus, the total time the ball is in the air is 2.55 + 2.55 =
5.10 seconds.

Note in this example how we handled the calcu-
lation of a distance due to an upward velocity and a

downward acceleration. Both factors affect how high
the ball goes; the distance traveled is the sum of the
distances due to each factor separately. •

The H u m a n  Cannonba l l
One of the attractions you may see at the circus is the hu-
man cannonball (Figure 3-17). This person is lowered into
the barrel of a giant cannon, only to be shot out, travel
through the air, and finally land in a safety net to the sound
of applause from the audience. Suppose he emerges from
the cannon's mouth with a vertical velocity of 20 m/s and
a horizontal velocity of 8 m/s. How far away would you
have to place the net to make sure he landed safely?

Constant
vertical
acceleration

•
horizontal
velocity

FIGURE 3-17. The motion of a human cannonball illustrates
the law of compound motion. The accelerated up-and-
down motion in the vertical direction is completely inde-
pendent of the uniform motion in the horizontal direction.

REASONING: The way to approach this problem is to re-
member that the horizontal and vertical motions are in-
dependent of each other. In the vertical direction we have
a problem just like Example 3-5, in which an object is
thrown upward but there is a constant downward accel-
eration equal to g. In this direction, the object slows down
as it moves up, then stops and falls back down. The time
for the up-and-down trip is twice the time it takes to get
from the ground to the top of the arc. Then we can use

Problems

the total time of up-and-down travel, multiplied by 8 m/s,
to tell us the distance the object travels horizontally, and
hence where to place the net.

SOLUTION:
Step 1. How long will it take to get to the top of the arc?
The velocity in the vertical direction is:
Final velocity = Initial velocity + Acceleration X Time

where initial velocity is 20 m/s and final velocity at the top
of the arc is 0. We get

0 =  20 in/s + (-9.8 m/s2 t )
where all values are in SI units. Note that the acceleration
due to gravity has a negative sign because the accelera-
tion is downward. Rearranging this equation, we can solve
for time, t:

9.8 m/s2 t  = 20 rn/s
20 m/s

t — 9.8 m/s2
= 2.04 s

In other words, the human cannonball takes about 2 sec-
onds to get to the top of the arc and two more seconds to
come down, for a total flight time of about 4 seconds.

Step 2. Where should you place the net?
In the horizontal direction, the human cannonball is trav-
elling at a steady 8 m/s. In four seconds the horizontal dis-
tance traveled is:

Distance = Velocity X Time
= 8 m/s X 4.08 s
= 32.6 m

The net, then, should be placed 32.6 meters (about 106
feet) from the mouth of the cannon.

Note that in the absence of air resistance, the vertical
motion is the same for the ball in Example 3-5 and the hu-
man in Example 3-6. This equivalence is part of the great
strength and beauty of physics: the same principles apply
to what may at first seem to be very different situations. •

1. I f  a race car completes a 3-mile oval track in 58 seconds,
what is its average speed? Did the car accelerate during
the 58 seconds?

2. I f  your car goes from 0 to 60 miles per hour in 6 seconds,
what is your average acceleration?

3. The hare and the tortoise are at the starting line together.
When the gun goes off, the hare moves off at a constant
speed of 10 meters per second. (Ignore the acceleration re-
quired to get the animal to this speed.) The tortoise starts
more slowly, but accelerates at the rate of 2 meters per sec-
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Moon
Relative

average distance
Relative

orbital period
Io 1.00 1.00
Europa 1.59 2.00
Ganymede 2.54 4.05
Callisto 4.46 9.42

and per second. Make a table showing the positions of the
two racers after 1 second, 2 seconds, 3 seconds, and so forth.
How long will it be before the tortoise passes the hare?

4. Someone in a car going past you at the speed of 20 meters
per second drops a small rock from a height of 2 meters.
How far from the point of the drop will the rock hit the
ground? (Hint: Find how long it will take the rock to fall
and then apply the law of compound motion.)

5. The Statue of Liberty weighs nearly 205 metric tons. I f  a
person can pull an average of 100 kg, how many people
would it take to move the Statue of Liberty?

6. The weight of the space shuttle is about 4.5 million pounds.
How many people would it take to move it? (See prob-
lem 5.)

7. The eccentricity of an ellipse is a measure of how elon-
gated, or oval, it is. It is defined for a planet's orbit as the
distance between the two foci divided by twice the aver-
age distance to the sun, which resides at one of the foci
(see Figure 3-18). A perfect circle has an eccentricity of
zero since the two foci are in the same position.

FIGURE 3-18. The eccentricity of a planetary orbit is defined
as the ratio of the distance between the foci and twice the
average distance to the Sun.

a. Calculate the eccentricities for the following solar sys-
tem objects. Al l  data are in terms of  the average dis-
tance of the Earth from the Sun, called the astronomical
unit (AU).

Object
Earth
Mars
Pluto
Halley's comet

1112 (AU)
0.017
0.14
9.8

17.4

Average
distance

1.0
1.52

39.5
17.9

b. Which object has the most nearly circular orbit? Which
object has the most elliptical orbit?

8. For the planets and comet in the list in problem 7, calcu-
late the orbital periods using Kepler's third law of plane-
tary motion.

9. Consider the orbit of a typical comet around the sun given
in Figure 3-19, which is marked at five different positions,
A, B, C, D, and E. Using Kepler's second law of planetary

Elliptical

E

FIGURE 3-19. The elliptical orbit of a hypothetical comet
around the Sun is shown with five positions along the orbit.

motion, rank those positions in  order o f  their relative
speeds, with the position for the fastest speed first.

10. Imagine that a new asteroid is discovered in the solar sys-
tem with a circular orbit and an orbital period of 8 years.
a. What is the average distance of this object from the Sun

in Earth units?
b. Between which planets would this new asteroid be

located?
11. The four  Galilean moons of Jupiter are Io ,  Europa,

Ganymede, and Callisto. Their average distances from
Jupiter and orbital periods are listed below in terms of Io's
values.

a. Plot  the square of the relative orbital period versus the
cube of the relative average distance for each moon. In
words, state the pattern you find in your graph.

b. From this information, do you agree or disagree that
Kepler's third law (as applied to the moons of Jupiter)
holds for Jupiter's four Galilean moons? Explain.

12. A n  average person can walk 1 kilometer in 10 minutes.
a. What is the speed in miles per hour? In kilometers per

hour?
b. How long would i t  take an average person to walk

3.5 miles? To walk 10 km?
c. H o w  far can an average person walk in 45 minutes?

In 1.5 hours?
13. The North American continental plate is moving away

from the European continental plate at a constant speed
of 4.2 cm per year.
a. I f  the average distance between the two plates is

7000 km and the two plates maintained their constant
speeds, how long ago were the two continental plates
together?

b. I n  1 million years (106 years), how large will the sepa-
ration be between the two plates?
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14. A  typical motorist in the United States travels 25,000 miles
in his or her car every year. I f  you assume that the aver-
age speed of the car while traveling is 45 miles per hour
(remember that the car is not always moving), calculate the
total number of hours an average motorist spends in his or
her car. How many hours per day is this? Do you think that
the average speed is a reasonable estimate? Explain.

15. The typical airborne speed of an intercontinental B747 jet
is 530 miles per hour, while the airborne speed of the su-
personic Concorde is 1500 miles per hour. I f  each airliner
were to circumnavigate the Earth (25,000 miles), what would
be the difference in air time spent by the two aircraft?

16. I t  takes light (speed = 3.0 x 108 m/s) 8.33 minutes to travel
from the Sun to the Earth and 1.3 seconds from the Moon
to the Earth. What is the Sun's average distance from the
Earth? The Moon's?

17. While traveling out in the country at 50 miles per hour,
your car's engine (and brakes) stops working and you coast
to a stop in 25 seconds. What was your average accelera-
tion during the time after the motor shut off?

18. Starting from rest, a train reaches a final, constant speed in
35 seconds while accelerating at a constant rate of 3 km/
hour/s.
a. What is the final speed of the train?
b. What is the total distance traveled by the train during

this period of constant acceleration? (Be careful here
with your units.)

19. A  rock falls to the bottom of a tall canyon, falling freely
with no air resistance, for 4.5 seconds. Make a table of the
distance traveled by the rock and its velocity after 1.0, 2.0,
3.0, 3.5, and 4.5 seconds.

20. I n  a safety test, a car traveling at 65 miles per hour crashes
directly into a wall, coming to a complete stop. The time of
contact for the crash was 0.25 s. What is the deceleration
of the car in terms of the acceleration of gravity (i.e., the
number of gs)?

21. A  baseball is hit off the edge of a cliff horizontally at a
speed of 30 m/s. I t  takes the ball 3 seconds to reach the
ground, with no air resistance.
a. H o w  far from the cliff wall does the ball land?
b. H o w  high is the cliff wall?

22. Sammy Sosa pops up a baseball directly over the batter's
box. It takes the ball 5.0 seconds to reach the waiting glove
of the catcher.

Investigations

a. What is the instantaneous speed of the ball at the top
of the ball's path?

b. What is the instantaneous speed of the ball immediately
after it was in contact with the bat?

c. H o w  far above the ground did the ball travel? (Assume
that the ball was caught at the same height that i t
was hit.)

23. Two balls are
height, 10 meters above the ground.The first ball is released
at rest and the second ball is released with a horizontal ve-
locity of 15 m/s. Which ball reaches the ground first? Why?

24. A  girl grabs a bucket of water and swings it around her in
a horizontal circle, at a constant speed of 2 m/s at an arm's
length of 0.7 meters. What is the centripetal acceleration
of the bucket of water?

released simultaneously from the same

25. The space shuttle orbits the Earth in a near-circular orbit
at a constant speed approximately 100 miles above the
Earth's surface. If  we assume that the centripetal acceler-
ation is equal to the acceleration due to gravity at sea level
(9.8 m/s2) and the orbital radius is equal to the radius of
the Earth (6380 km):

a. What is the average speed of the space shuttle?
b. How  long does the space shuttle take to make one or-

bit around the Earth?

26. The Moon moves around the Earth in a near-circular orbit
of radius 3.84 x 108 m in 27.3 days. What is the centripetal
acceleration of the Moon in in/s2?

27. Some people who study the history of life on Earth have
suggested that every 26 million years a hitherto unknown
companion star to the sun comes near the solar system,
sending a storm of comets into the inner solar system. (In
this scheme, the dinosaurs were wiped out when one of
these comets hit the Earth 65 million years ago). From
Kepler's laws, what would the axis of the elliptical orbit of
this companion, named Nemesis, have to be for its period
to be 26 million years? Compare that axis to the distance
to the nearest star.

28. Scientists who study the Earth have found that Europe and
North America are separating from each other at the rate
of about 5 centimeters per year. Assuming this rate has
been constant throughout history, estimate the age of the
Atlantic Ocean. (Hint: How wide is the ocean now?) Com-
pare this number to the age of the Earth.

1. Read the Bertold Brecht play Galileo, which dramatizes
Galileo Galilei's heresy trial. Discuss the dilemma faced by
scientists whose discoveries offend conventional ideas. What

areas of scientific research does today's society find offen-
sive or immoral? Why?
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2. What other kinds of models of the universe did old civiliza-
tions develop? Look up those of the Mayans, the Chinese,
and the Indians of the American Southwest, and describe
some of their models. What features do these models have
in common?

3. Find out how Galileo came to the idea of  the pendulum
clock. What did he actually observe that led him to this
development?

4. Drop a wadded-up sheet of paper and a flat one side by side.
Which reaches the ground first? Why? What do you think
would happen if this experiment were done in a vacuum?

V1/1/1/1/1/ Resources

5. When you are in a car traveling at a constant speed, throw
a ball up and describe its motion as you see it. Is there a dif-
ference when the car is being accelerated?

6. Drop a helium-filled balloon. Does it fall with acceleration
g? Why? What do you think would happen if you dropped
the balloon in a vacuum?

7. Investigate different technologies that scientists use to mea-
sure time. What is the shortest time interval that can be mea-
sured and how is such a measurement accomplished? What
sorts of experiments require this kind of measurement?

See the Physics Matters home page at www.wiley.com/college/trefil for valuable web links.

1. www.mcm.acu.edu/academic/galileo/ars/arshtml/mathofmotionthtml A  website based on a video series, The Art of
Renaissance Science, which includes a discussions of Galileo's contributions to the mathematics of motion, to science, and to
art via the development of painting perspective.

2. galileo.imss.firenze.it/museo/b/egalilg.html The Galileo room of the History of Science Museum in Florence, Italy. The
museum contains originals and models of apparatus described in this chapter, and Galileo's preserved right middle finger.

3. observe.arc.nasa.gov/nasa/education/reference/orbits/orbits.html A  partially animated NASA tutorial on satellite mo-
tion and Kepler's laws.

4. liftoff.msfc.nasa.gov/toc.asp?s=Satellites Contains tutorials on types of satellites (including a section on geosynchronous
satellites) and an extensive section on tracking current Earth-orbiting spacecraft live via the web.

5. www.fourmilab.ch/solar/solar.html A n  online solar system orrery showing positions of the solar planets and a few comets.
6. jersey.uoregon.edu/vIab/Cannon/index.html The cannon Java applet simulates projectile motion, allowing control of launch

conditions.
7. wvvw.mcm.acu.edu/academic/galileo/ars/arshtml/mathofmotionthtml A  website based on a video series, The Art of

Renaissance Science, which includes a discussion of Galileo's contributions to the mathematics of motion, to science and to art
via the development of painting perspective.

•


