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K E Y  I D E A

In the absence of external torques,
the angular momentum of any
system is constant.

PHYSICS AROUND US .  .  .  Spinning
A n  ice skater speeds up as she goes into a turn.

Suddenly, she swings gracefully into a spin,
both arms and one leg extended to the side.

As she pulls her arm and leg in closer to her body, the
rate of spin increases until, at the end, her features
turn into a blur.

You are watching a news program at home when
the anchor starts talking to a colleague half a world
away. High above the Earth's atmosphere, a satellite
relays the signals back and forth between the two re-
porters. Inside the satellite, meanwhile, a set of small
spinning gyroscopes allow the onboard computers to
keep track of which way the satellite's antennae are

pointing so that the signals are aimed in the right
direction.

It's winter. You wrap your coat tightly around you
in the blustering wind. You know, however, that in
six months you'll be walking around in shorts. You may
even complain to a friend about how pleasant it would
be if you could average the two seasons out, but you
know it will never happen.

Amazingly, all three of these phenomena—skater,
satellite, and seasons—are related to a quantity that
physicists call angular momentum. All rotating objects
have angular momentum, so in this chapter we also
examine the physics of rotational motion.
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•  ROTATIONAL MOTION
So far we have discussed the motion of an object along a line, both straight
lines and curved lines. We have not looked at any motion the object might
have with respect to itself, such as spinning, as it moves along a line. How-
ever, real objects can spin around as they move, and they demonstrate dif-
ferent properties than objects that don't spin.

Many of the laws of mechanics for objects that move in a line have analogs
for objects that spin. We see in this chapter that rotating objects have rota-
tional speed analogous to linear speed and obey a rotational version of New-
ton's second law. We study rotational analogs for force and momentum as well.
Much of the physics in this chapter will seem new and yet somewhat familiar.

All spinning objects display rotational motion. We can analyze this mo-
tion in terms of two properties: an axis of rotation and a rotational velocity.

Axis of  Rotation
Imagine the Earth spinning in space. Everything on the surface is
moving except for two points—the points we call the North and
South Poles. These points remain stationary with respect to the ob-
ject while everything else turns around them. You can imagine a
line through the center of the Earth connecting the two poles (Fig-
ure 7-1). Each point on this line is also stationary with respect to
the Earth, while every other point in the planet turns around it. This
line, around which everything else rotates, is called the axis of
rotation of the Earth. It is this axis on which an ordinary desktop
globe spins.

Every rotating object has an axis of rotation. For example, the
wheels of your car rotate around an axis at their center, along the
car's axle. The Sombrero galaxy rotates around an axis perpendicu-
lar to its plane (Figure 7-2). Of course, your car's wheels turn many times each sec-
ond, while the outer parts of a galaxy take hundreds of millions of years to make
just one rotation. Nevertheless, the basic idea in each situation is the same. An
overall rotation occurs around an axis, which itself remains stationary with respect
to the object.

Axis of rotation

FIGURE 7-1. Each point on an
imaginary line that passes
through the center of the Earth,
connecting the two poles, is sta-
tionary with respect to the Earth.
Every other point in the planet
turns around this axis of rotation.

Develop Your Intu i t ion:
The Pizza Ga laxy

-tr" '  A  pizza maker rolls out the dough for the crust,
into the air to thin it out (and to show off) (Figure 7-3)
rotation of the pizza dough while it's in the air?

Like the galaxy, the pizza dough spins (roughly) in a
ter of the disk, an imaginary vertical line remains statio
the pizza dough. This line moves up and down with the
on the line moves in a circle. This imaginary line through
the axis of rotation. Every rotating object has an axis of
axis is sometimes moving.

then flips it spinning
. What is the axis of

flat disk. At the cen-
nary with respect to
dough, but no point
the disk of dough is
rotation, even if the

FIGURE 7-2. The Sombrero
galaxy is a typical spiral
galaxy, much like our own
Milky Way, rotating about an
axis through its center.

FIGURE 7-3. Pizza dough
thins out into a circular disk
as it spins, something like
how a spiral galaxy forms.
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Speed of  Rotation
Period and Frequency The Earth spins about its axis of rotation about once
every 24 hours. This daily cycle is one of the most familiar rotational motions for
many of us. However, any rotational motion can be characterized by the time
it takes for the object to make one complete rotation. This time is called the
period of rotation, which is usually represented by T

Another common way of talking about rotational motion is to specify the
number of times an object completes a rotation in a given amount of time—a
number called the frequency of rotation, which is usually represented by f  The
frequency of Earth's rotation, for example, is 1 cycle per 24 hours or about 365
cycles per year.

Frequency can be defined in terms of any time period (a day, a year, etc.),
but in many scientific applications frequency is defined as the number of rota-
tions completed in 1 second. In the case of the Earth, only a small fraction of a
rotation is completed in 1 second. In other cases (your car's wheels at high speeds,
for example), many rotations may be completed in 1 second, so the frequency is
some number larger than 1.

Rotational frequency is measured in a unit called the hertz, named after the
German physicist Heinrich Rudolf Hertz (1857-1894), who discovered radio
waves (see Chapter 19). A body that completes one rotation in 1 second has a
frequency of 1 hertz (1 Hz).

tMA.,, Deve lop  Your In tu i t ion:
H o w  Of ten  Does t h e  Electric Current
in Your Ha i r  Dryer  Change Direction?

Pick up any electric appliance in your house, such as a toaster or hair dryer,
and find where its properties are specified. You will probably see a note that
reads "60 Hz." What does this mean?

"Hz" is the abbreviation for hertz.This designation on the appliance means
that it is intended for use with electric currents in which the direction of cur-
rent changes 60 times each second (see Chapter 17), as in the United States.
In Europe, the standard current is 50 Hz, which is one reason why it's not al-
ways possible to use American appliances in Europe.

Relation Between Period and Frequency Period and frequency are related to
each other. An object that spins with a high frequency has a short period, while
an object with a low frequency has a long period. An object that has a long ro-
tational period (such as the Earth) completes only a small fraction of a revolu-
tion in a second, and hence has a low frequency. In fact, the relationship between
the period and the frequency of a rotation is simple to state.

1. In words:
The longer the period, the lower the frequency, and vice versa.

2. In equations with words:
The period is equal to one divided by the frequency.

Period = 1
Frequency
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and
The frequency is equal to one divided by the period.

1Frequency = Period
3. In equations with symbols:

1T = 7  and  f  = 7,

Our Spinning P lane t
What is the frequency of the Earth's rotation in hertz?

SOLUTION: We know that the period of the Earth's rotation is 1 day or 24 hours.
We want frequency recorded in units of hertz, or cycles per second, so we first
must calculate the number of seconds in 1 day. There are 60 seconds in a minute,
60 minutes in an hour, and 24 hours in a day. Consequently, the number of sec-
onds in 1 day (the period of rotation) is

T =  60 s/min x 60 min/h x 24 h/day
= 86,400 s/day

Then, from the relationship between period and frequency,

1Frequency = Period
1  1

f  = T  = 86,400 Hz
= 1.16 x 10-5 Hz •

Angular Speed Think about children on a moving carousel. The children on the
inner horses, closer to the axis of rotation, travel a shorter distance during each
rotation than children on the outer horses. Children on the inner horses must
move at a slower speed than children on the outer horses. Yet we know that
everyone on the carousel makes one circuit in the same amount of time. That
shared aspect of rotational motion is called angular speed.

Imagine drawing a line that starts at the center of the carousel and passes
through two children who are at different distances from the center before the
rotation starts (Figure 7-4 on page 142). As the carousel turns, we can character-
ize the change in position of the children by the angle 0 (the Greek letter theta),
as shown. The point is that both children have moved through this same angle,
even though they have traveled different distances along their respective paths.

1. In words:
Angular speed is the angle through which an object has moved about the
axis of rotation divided by the time it takes it to go through that angle.

2. In an equation with words:

Angular speed =Rotation angle
Time
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In radians, r  0=5-

FIGURE 7-5.  Angles in-
volved in the measurement
of angular speed are often
given in terms of radians. If
an object travels through an
arc of length s (in meters)
along a circle of radius r
(also in meters), then the an-
gle 0 (measured in radians) is
defined as 0 =

(a) (b)

FIGURE 7-4. (a) Children riding near the outside of a rotating carousel move faster
than children near the center, but they all move with the same angular speed. (b) A
line (A) from the center of a carousel passes through two children at different distances
from the center. As the carousel turns, the change in position of the children is given
by the angle 0, as shown. Both children have moved through this same angle, even
though they have traveled different distances along their respective paths.

3. In an equation with symbols:
0to = —t

This definition of angular speed, w (the Greek letter omega), is similar to the
definition of linear speed as the distance traveled divided by the time it takes to
travel that distance. Note, however, that while the two children on the carousel
have the same angular speed, they have different linear speeds. In particular, the
child farther from the center is moving faster.

It is customary to define the angle in the definition of angular speed in terms
of a unit called the radian. If, as in Figure 7-5, an object travels through an arc
of length s (in meters) along a circle of radius r (also in meters), then the angle
0 (measured in radians) is defined as:

B = —r

Coming Fu l l  Circle
If an object travels all the way around a circle, what is 0 in degrees? In radians?

SOLUTION: A full circle is 360 degrees, so that is the value of 0 in degrees. To get
the value in radians, we note that if the object goes all the way around a circle,
it will have traveled a distance equal to the circumference of the circle. Thus,

s 2 i r r



Torque 1 4 3

From the definition of the radian, then, the angle through which the object
travels is

sB = —r
(2 'TO

r
= 27r

Thus, 360 degrees is equal to 27r radians. •

Angular Frequency Each time a rotating object completes one revolution it trav-
erses an angle of 27r radians. Sometimes it is useful to measure rotational mo-
tion in terms of the angular frequency, which is defined as the number of radians
traversed in 1 second:

Angular frequency = 27rf

where f  is the frequency of rotation in cycles per second, or hertz. Note that
frequency f  and angular frequency are measures of exactly the same physical
phenomenon—namely, how rapidly an object rotates. The only difference is
whether the units are cycles per second, or hertz (rotation frequency), or radi-
ans per second (angular frequency).

•  TORQUE
Suppose you turned your bicycle upside down so that the wheels were in
the air and you wanted to get the wheels spinning. What would you do?
Most likely you would place your hand firmly on the wheel and move it
downward—a process that would get the wheel turning. If you wanted the
wheel to go faster, you would repeat the operation until you achieved the
desired speed.

Let's look at this simple example from the point of view of the forces be-
ing applied (Figure 7-6). The axis of rotation is the axle that attaches the wheel
to the bike. To get the wheel spinning, you have to apply a force that satisfies
two criteria. First, the force must have a component that is tangent to the wheel;
that is, in the plane of rotation and parallel to the edge of the wheel. Second,
this force has to be applied some distance away from the axis. In this example
the force is applied a perpendicular distance r away from the axis, where r is
the wheel's radius. (This distance is sometimes called the "lever arm," a term
that arises from the common use of torques in the operation of a simple lever.)
A force applied in this way, satisfying these two criteria, is said to produce
a torque.

If a tangential force F is applied a distance r from the axis of rotation of an
object, then the torque r (the Greek letter tau) is defined as

1. In words:
The torque is the tangential force being applied times the perpendicular dis-
tance from the axis of rotation.

F= Tangential force

FIGURE 7-6. To get a wheel
spinning about its axis, you
have to apply a torque.
The force that generates the
torque must satisfy two crite-
ria. First, the force must have
a component that is tangent
to the wheel; that is, in the
plane of rotation and parallel
to the edge of the wheel.
Second, this force has to be
applied some distance away
from the axis. This distance
is sometimes called the
"lever arm," a term that
arises from the common use
of torques in the operation
of a simple lever.
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2. In an equation with words:
Torque equals tangential force times perpendicular distance.

3. In an equation with symbols:
T = F X r

It is easier to open a door
by pushing or pulling on the
edge farthest from the
hinges.

FIGURE 7-7. The use of a
torque underlies the opera-
tion of a simple lever. A
beam is placed over the ful-
crum, with the length of the
beam on one side of the ful-
crum longer than the length
on the other side. Applying
a downward force to the
long side of the beam allows
you to lift a heavy object on
the short side of the beam.
The fulcrum serves as the
axis of rotation for the beam.

Torque plays a role in rotational motion analogous to the role of force in
linear motion. If we want to change the motion of an object moving in a line, we
have to apply a force. In the same way, if we want to change the way something
is rotating, we have to apply a torque. In our example, we applied a torque to
the bicycle wheel to start and then speed up its rotation.

It's important to remember that in order to produce a change in rotation, a
force must have a component that is tangent (in a direction parallel to the edge

of the wheel). If you grabbed the bicycle wheel and pushed
inward toward the center or to the side (perpendicular to
the plane of rotation), the wheel wouldn't start to spin. In
these cases, you'd be applying a force without producing
a torque.

Torque is needed to change the rotational motion of any
object, not just a wheel. For example, when you open a door
by pushing on the handle, you are exerting a force at a dis-
tance (the width of the door) from the axis of rotation (the
hinges). The handle is placed at the edge of the door far-
thest from the hinges to increase the torque produced by a
given force (your push). You probably know from experi-
ence that it's much harder to push a door open if you push
on the side near the hinges.

The use of a torque underlies the operation of a sim-
ple lever. In this application, a beam is placed over a sharp
edge, called the "fulcrum," with the length of the beam on

one side of the fulcrum longer than the length on the other side (Figure 7-7).
You apply a downward force to the long side of the beam in order to lift a load
at the short side of the beam. Here the fulcrum serves as the axis of rotation
for the beam. The load on the short side of the beam produces a torque in one
direction that must be overcome by the torque in the opposite direction, pro-
duced by your applied force on the long side of the beam (your lever arm).
Since your lever arm is longer, you can lift the load by exerting a smaller force
than the weight of the load, but you must move the arm through a greater
distance.

Load

Weight
of load

Force o f
lever

Fulcrum

Load's lever
arm

Your lever arm
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Braking
From Newton's laws of motion, it follows that any change in rotational motion,
whether speeding up or slowing down, requires a force—a torque. When you
are riding your bike and want to stop, you squeeze a lever attached to the
handlebars. As you do this, two small plastic or rubber brake pads
clamp down on the metal frame of the tire and the bike slows
down (Figure 7-8). Where are the torques in this process?

The brake pads squeezing down on the metal frame
generate a frictional force. This force acts in a direction
tangent to the wheel and in a direction opposite to the
direction of the wheel's motion. Because the frictional
force is applied away from the axis of rotation, it pro-
duces a torque, in this case a torque that slows down the Brake padrotation rather than one that speeds it up.

The brakes in your car work the same way, although Wheel rim
you can't see them in operation. When you put your foot
on the brake pedal, tough ceramic pads clamp down on
spinning metal parts of the wheel, producing a frictional
torque that slows down the wheel.

Force in brake cable

FIGURE 7-8. Brake pads exert a frictional force against
the rim of a bicycle wheel to slow down the wheel's ro-
tation and bring the bike to a stop.

• a .  D e v e l o p  Yo u r  I n t u i t i o n :
▶ T o r q u e  t o  t h e  R e s c u e
•14L W h e n  you change a tire on your car, it may happen that the nut hold-
ing the tire to the axle is rusted and difficult to turn. In this case, experienced
mechanics sometimes put a length of pipe around the handle of the wrench,
in such a way that the pipe extends farther out than the original handle of the
wrench (Figure 7-9). Use the concept of torque to explain why this might be
a useful thing to do.

The problem is that you can exert
only so much force on the wrench and
therefore produce only so much torque
to turn the recalcitrant nut. However,
torque depends on  two factors: the
amount of applied tangential force and
the distance of that force from the axis
of rotation. The pipe, in effect, makes the
handle o f  the wrench longer—it in-
creases r  in the torque equation—and
therefore allows you to exert a greater
torque while applying the same force.

A word of caution: Sometimes this FIGURE 7-9. Tire wrench in use; an
technique can generate more torque extender would increase the length
than you want. The authors have seen o f  the lever arm so you could exert a
tire changers use such a long pipe that larger torque.
the steel nut was completely sheared off, requiring a trip to a mechanic to set
things right.
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•  ANGULAR MOMENTUM
Just as an object moving in a straight line keeps moving unless a force acts on
it, an object that is rotating keeps rotating unless a torque acts to make it stop.
Thus, a spinning top will spin until the friction between its point of contact and
the floor slows it down. A wheel will turn until friction in its bearing stops it. This
tendency to keep rotating is often stated in terms of a quantity called angular
momentum.

We can derive the formula for angular momentum step by step from New-
ton's laws, just as we derived the formula for linear momentum. However, the
derivation would be more complicated, so we'll just point out some everyday ex-
amples to make the result seem reasonable. Afterward, we'll state a definition of
angular momentum.

Think about some common experiences in which a torque speeds up or slows
down a rotation. First, in the example of the bicycle wheel, imagine that the tire
was full of lead rather than air. Common sense tells you that it would require a
greater force (and therefore a greater torque) to spin the wheel up to the same
angular speed. You also know from experience that if the radius of the wheel
were twice as big, it would require a greater force (and therefore a greater torque)
to get it rotating. The relation between torque and the change of rotation, then,
must involve both the mass of the rotating object and the distance between the
axis of rotation and the location of that mass.

Moment of  Inertia
The quantity that describes the distribution of mass around an axis of rotation
is called the moment of inertia (I). In general, the farther away the mass is from
the axis, the greater the moment of inertia (Figure 7-10). For example, if you pick
up a dumbbell with two weights on it, as shown, you have to apply a certain
amount of torque to get it to rotate. If you move the weights out so that they
are twice their original distance from the axis of rotation, it takes a greater torque
to get the same amount of rotational speed—four times as much torque in this

FIGURE 7-10 .  Moment of
inertia (I) describes the distri-
bution of mass around an
axis of rotation. The farther
away the mass is from the
axis, the greater the moment
of inertia.

(a)

(b)

C
Axis of
rotation

m

m

I = 2 mr2

1= 2 m (2/)2
= 8 mr2
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Disk or
solid cylinder
/=ImR2

Hollow sphere
/=imR2

Solid sphere
/ = imR2

Hoop or
cylindrical shell
/ = mR2

Slender rod, S l e n d e r  rod,
axis through center

/ M L 212

axis through one end

I = 1177L23

example. The torque must increase because moving the weights farther out in-
creases the moment of inertia of the dumbbell.

In Figure 7-11, we show several common objects rotating around various
axes, along with their moments of inertia. Notice that all the moments of inertia
increase with the mass of the object—double the mass and you double the mo-
ment of inertia. Note also that the moment of inertia increases as the square of
the dimension of the object—double the radius of a sphere, for example, and you
increase the moment of inertia by a factor of four.

Definition o f  Angular Momentum
We are now ready to give a technical definition of angular momentum.

1. In words:

Angular momentum of an object depends on how the mass of the object is
distributed and on its rate of rotation.

2. In an equation with words:

Angular momentum = Moment of inertia times angular speed.
3. In  an equation with symbols:

L = I X a)

where L is the angular momentum and I  is the moment of inertia.

FIGURE 7-1 1 . Moments of
inertia for several common
objects rotating around vari-
ous axes. All of these mo-
ments of inertia increase with
the mass (m) of the object
(double the mass and you
double the moment of iner-
tia), while the moment of in-
ertia increases as the square
of the dimension of the ob-
ject (double the radius of a
sphere, for example, and
you increase its moment of
inertia by a factor of four).
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Let's think for a moment about the amount of angular momentum pos-
sessed by different objects. First, we note that the faster something spins, the
higher its angular momentum—double the spinning speed and you double the
angular momentum. Also, if you increase the moment of inertia, the angular mo-
mentum increases. This means that if mass is moved farther away from the axis
of rotation and the rate of rotation stays the same, then the angular momentum
increases.

•: Develop Your Intu i t ion:
4 Global  Warming Effects

One effect that scientists think might accompany global warming is
that the water in the oceans will warm up and expand. What effect will this
expansion have on the moment of inertia of the Earth? I f  the angular mo-
mentum of the Earth doesn't change, what effect will this change have on the
length of the day?

If the oceans expand slightly, then mass will move away from the Earth's
axis of rotation and the moment of inertia will increase. If the angular mo-
mentum stays the same while this happens, then the angular frequency has to
drop a little to compensate for the increase in moment of inertia. The result
is that the Earth will turn more slowly and the length of the day will increase.

This change won't be noticeable, however. Scientists estimate that days
might increase in length by a few millionths of a second over the next few
centuries.

Angular Momentum and Torque
Newton's second law describes the effect of a force on the rate of change of lin-
ear momentum (see Chapter 6). An analogous law for rotating bodies defines
the effect of torque (a tangential force) on the rate of rotation (a change in an-
gular momentum).

1. In words:
The rate of change in angular momentum of an object equals the net external
torque on that object.

2. In an equation with words:
Net external torque = Change in angular momentum divided by

the change in time

3. In an equation with symbols:
AL

= At
The net external torque on an object is defined as the sum of the torques

generated by all external forces acting on that object. Can you see the similar-
ity between this equation and the equation in Chapter 6 for linear motion? In
both cases, the force (or net external torque) on an object causes a change in
momentum (or angular momentum) over a time interval, At.
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CONSERVATION O F  ANGULAR MOMENTUM
If a net external torque on a system is zero, the preceding equation tells us that
the change in angular momentum must be zero. In other words, without the ac-
tion of a force acting at a distance from the axis of rotation, the total angular
momentum of a system cannot change. Like its counterpart, linear momentum,
angular momentum is conserved in the absence of outside influences. This prin-
ciple is known as the conservation of angular momentum.

("1

1. In words:

I f  the net external torque is zero, the angular momentum of any system must
stay constant over time.

2. In an equation with words:

The change in angular momentum of an isolated system equals zero.

3. In an equation with symbols:

AL = 0

The consequences of the conservation of angular momentum that you're
most likely to experience have to do with situations in which something happens
to change an object's moment of inertia. In this case, the angular velocity must
change as well so that the product of I and w will stay the same. In most practi-
cal situations of this kind, you may find it helpful to express conservation of an-
gular momentum in the form:

Initial angular momentum = Final angular momentum
or I ; X w i = l f X w f

A striking illustration of this point can be seen in figure skating competi-
tions, as described in the Physics Around Us section. As the skater goes into the
spin with her arms spread wide, her moment of inertia is high because an ap-
preciable amount of mass (her arms) is located far from the axis of rotation (Fig-
ure 7-12a). As she pulls her arms in over her head, her moment of inertia drops
(Figure 7-12b). Since no outside force is acting to affect the spin, her angular mo-
mentum must remain the same. The only way for this to happen is for her an-
gular velocity (that is, her rate of spin) to increase.

We can make this same point by looking at the equation for angular
momentum:

L = I  x to

If the skater pulls in her arms, her moment of inertia decreases. The only way
the angular momentum L can stay the same is for her angular frequency co to
increase in a compensating way. So, for example, if I  decreases by w  has to
increase by a factor of 2 to keep L  the same. Hence, her rotational speed
doubles.

Can you can use this same reasoning to explain why the spin slows down
when she puts her arms back out?

(a)

(b)

FIGURE 7-12.  (a) Figure
skater in a spin. (b) She can
increase her rotation rate by
pulling her arms and legs
closer to her body, decreas-
ing her moment of inertia.
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FIGURE 7-13. The right-hand rule for finding the direction of angular momentum for a
spinning object. Curl the fingers of your right hand in the direction of the rotation;
your right thumb will point in the direction of the angular momentum.

Footballs are thrown with a spiral
motion to minimize wobble.

The Direction of  Rotation
Like linear momentum, angular momentum has a direction. The so-called
"right-hand rule" for finding this direction for a spinning object is simple:
if you curl the fingers of your right hand in the direction of the rotation,
your right thumb will be pointing in the direction of the angular mo-
mentum (Figure 7-13). For example, the angular momentum of the Earth
points upward along the axis of rotation to the North Pole.

The conservation of angular momentum implies that both the size and
direction of the angular momentum of an object remain fixed in the ab-
sence of torques. This fact explains why the orientation of an isolated spin-
ning object, such as a football thrown in a spiral, is generally more stable
than that of a nonspinning object, such as a football bouncing on the ground.

Axis of
rotation

Dancers farther apart,
larger moment of inertia,
slower angular velocity

Axis of
rotation

Dancers close together,
smaller moment of inertia,

faster angular velocity

4.„„.t% Develop Your Intu i t ion:
g  W a l t z e r s

Dancers doing a waltz normally hold each
other at arm's length to avoid stepping on each other's
feet. If they have to make a fast turn, however, you will
often see them move together, with each partner put-
ting his or her feet between or even behind those of the
other. Why do they risk calamity this way?

The answer has to do with the conservation of angu-
lar momentum. Under normal circumstances, the couple's
mass is located far from the axis of rotation (which is lo-
cated between the dancers). By moving closer together,
they reduce their moment of inertia and, like the ice
skater, increase their angular velocity (Figure 7-14). This
change in position helps them get through the turn, after
which they can separate and slow down the rotation.

FIGURE 7-14. By moving closer together, dancers reduce
their moment of inertia and increase their angular velocity.
This change in position helps them get through fast turns,
after which they can separate and slow down the rotation.
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L O O K I N G  D E E P E R

The Collapse
of Stars
Stars often end their life cycle by undergoing a rapid
collapse. The Sun, for example, which now has a radius
of 7 x 108 meters, will collapse to a type of star called
a "white dwarf," approximately the same size as the
Earth. (The radius of the Earth is about 6.4 X 106 me-
ters—less than a hundredth that of the Sun.) The Sun
currently rotates about its axis once every 26 days. How
will its rotation change when it becomes a white dwarf?

No outside forces will act on the Sun during its col-
lapse, so its angular momentum must be conserved. As
the Sun contracts to the size of the Earth, its moment
of inertia will decrease dramatically because, as with a
skater pulling in her arms, the mass will be located much
closer to the axis of rotation. Consequently, the shrunken
Sun's rate of rotation will have to increase dramatically
to compensate. In other words, after the collapse, the
Sun will rotate much faster than it does now.

We work out the numbers for this in Example 7-3
at the end of the chapter. The result turns out to be 3.1
minutes. In fact, some stars collapse to even smaller ob-
jects than white dwarves and they rotate hundreds of
times each second.

Connection
Inertial Guidance Systems
The conservation of angular momentum plays an important role in the inertial
guidance systems for navigation in airplanes and satellites. The idea behind such
systems is very simple. A massive object such as a sphere or a flat circular disk
is set into rotation inside a device in which very little resistance (that is, almost
no torque) is exerted by the bearings. Once such an object, called a "gyroscope,"
is set into rotation, its angular momentum continues to point in the same direc-
tion, regardless of how the aircraft or rocket moves around it. By sensing the
constant rotation and seeing how it is related to the orientation of the satellite,
engineers can tell which way the satellite is pointed.

Toy gyroscopes and tops work in the same way (Figure 7-15). In the case of
a spinning top, its weight starts to topple it over as it spins slightly away from
perfectly vertical. However, when the weight is acting at a slight distance from
the vertical axis, it produces a torque. This torque changes the angular momen-
tum of the top; but what changes is the direction of the angular momentum, not
its size. The angular momentum changes direction in such a way as to bring the
top back to spinning vertically. However, the changing direction of angular mo-
mentum continues to cause a torque even as the top tries to get back to verti-
cal. The result is that the top wobbles as it spins:The axis of rotation traces out
the sides of an imaginary cone that gets larger as the top slows down from fric-
tion at the contact point.

Other spinning objects show this wobbling motion, which goes by the tech-
nical name "precession." You can certainly see the wobble in a thrown football
if it is not thrown with a tight spiral. The Earth, too, wobbles in its motion around
the Sun, as do all the other planets. •

•  MOTION I N  A  PLANE WITH ROTATION
In Chapter 6 we learned how to analyze
an object moving in a straight line or in
such as gravity. In this chapter, we have
is rotating around an axis. The most

situations involving the momentum of
a plane under the influence of a force
learned how to deal with a body that
general kind o f  motion involves a

A4.

--------------
- - - - -\  -  - - ----------------------

L

FIGURE 7-1 5. A  toy top or
gyroscope maintains its ori-
entation as it spins. Inertial
guidance systems rely on
rapidly spinning gyroscopes
that maintain orientation
very accurately.
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combination of these two types of motion. Think about the movements of a
boomerang in flight or a Frisbee sailing through the air. In these cases, the fly-
ing objects are moving under the influence of gravity, but they are also rotating
around an axis. We now have all the background we need to talk about these
sorts of complicated motions.

Center of mass

zg
V

Counterclockwise torque
= 3g x r

FIGURE 7-16.  The down-
ward pull of gravity on the
right-hand side of a balanc-
ing ruler produces a torque
that would cause a clockwise
rotation of the ruler except
for the force of gravity acting
on the left-hand side that
would cause a counterclock-
wise rotation. When the ruler
is balanced on your finger,
these two torques are equal
and cancel each other out.

Center of  Mass
Imagine taking a ruler and balancing it on one finger. You know that the ruler
will balance if you support it right in the middle. As shown in Figure 7-16, we
can understand this situation in terms of the torques exerted on the ruler by grav-

ity. The downward pull of gravity on the right-hand side pro-
duces a torque that, if it were the only force acting, would

produce a clockwise rotation of  the ruler.
Similarly, the force of gravity acting on the

V

Clockwise torque
= T g x r

left-hand side creates a torque that would
produce a counterclockwise rotation. When
the ruler is balanced on your finger, these two

torques are equal and cancel each other out. The ruler
sits stationary, not rotating at all. The point of support
on which an object can be balanced like this is called
its center of mass (or, sometimes, its center of gravity).

You can think of the center of mass of an object as being the average of the
positions of the object's mass. For a regular geometrical object such as a cube or
a sphere with a uniform mass distribution, the center of mass is at the geomet-
rical center of the object. The center of mass of a smooth disk, for example, is at
the exact center of the disk.

The center of mass of a system doesn't have to be at its geometrical center,
however. Every object, no matter how complicated its shape or structure, has a
single point where all the torques due to gravity cancel, a single point where it
could be supported without rotation. For example, if one side of the ruler weighs
more than the other side, the center of mass would be located more toward the
heavy side.

Complex Motion
In Chapter 3 we saw that the discussion of motion in two dimensions could be
greatly simplified by the law of compound motion, which allows us to break
the problem up into a connected pair of simpler one-dimensional problems. In
the same way, motions that include rotations can be broken up into a series of
simpler problems. The analog of the law of compound motion for rotating
objects is:

Motion that involves rotation can be thought of
as the motion of the center of mass (treated as if  the object

were a single particle) plus rotation about the center of mass.

Consider, as an example, a springboard diver performing a somersault in the
air. Using the rule we have just stated, we could talk about her motion in two
stages: (1) the motion of her center of mass and (2) the rotation around her cen-
ter of mass. The motion of the diver's center of mass is simply that of a point
particle under the influence of the force of gravity. As we saw in Chapter 3, the L I
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FIGURE 7-17. When the diver leaves the diving board (a) her
body is vertical, but at the top of her arc (b), her hips are now
horizontal. Thus the board applied a torque to her body when she
jumped off, giving her angular momentum and causing her to ro-
tate around her center of mass as the dive progresses. Once the
diver is launched, there are no further torques acting on her.
When she grabs her knees (c), which lowers her moment of iner-
tia, she starts rotating faster to keep the angular momentum the
same. When she straightens out again (d), the moment of inertia
increases and the angular velocity drops.

path followed by such a particle is a parabola that rises to a peak and then
falls, as shown in Figure 7-17.

To understand the motion around the center of mass, imagine travel-
ing along the parabola with the diver. When she leaves the diving board,
her body is vertical, as shown in Figure 7-17. At the top of her parabolic
arc, her hips are now horizontal. When she reaches the water, she is again
vertical but with her head down. In other words, the board applies a torque
to her body when she jumps off, causing her to rotate around her center
of mass as the dive progresses. At the beginning of the dive, she is rotat-
ing and therefore has a certain amount of angular momentum.

Once the diver is launched, however, there are no further torques act-
ing on her, a fact that means that whatever angular momentum she had
leaving the board remains constant. Thus, when she grabs her knees, an act
that lowers her moment of inertia, she starts rotating faster to keep the angular
momentum the same. This tucking action is what produces the spectacular rota-
tion during the high part of the dive. When she straightens out again, the mo-
ment of inertia increases and the angular velocity drops. She enters the water
cleanly.

..cD: Deve lop  Your Intu i t ion:  N o t  a  Swan D ive4
,1 How can a springboard diver enter the water so that there is no ro-

1"' ' '  ta t ion  about his center of mass? What would such a dive look like?
No matter what he does, the diver's center of mass will still move under

the force of gravity through the same parabola. If he leaves the springboard
without torque, however, his body must remain in a heads-up vertical position
throughout the dive. There will be no rotation around his center of mass, and
he will enter the water feet first. While such a dive is not likely to win an
Olympic medal, he can make quite a splash by pulling his knees up with his
arms to perform a "cannonball."

A springboard diver always
follows a parabolic path
through the air.
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(a)

Smaller area, L a r g e r  area,
brighter light d i m m e r  light

FIGURE 7-19 .  When a flash-
light shines on the floor from
directly overhead (a), the
light is brighter and it covers
a smaller surface area than
when the light shines at an
angle (b).

Vernal equinox (March):
First day of spring

Summer solstice (June):
Northern Hemisphere is tilted
toward Sun and has summer

- 7 = 111 i 1 = 111111111

Winter solstice (December):
Northern Hemisphere is tilted
away from Sun and has winter

Autumnal equinox (September):
First day of autumn

FIGURE 7-18. In the months of July and August, the Earth is tilted so that the North-
ern Hemisphere leans toward the Sun. During January and February, the Northern
Hemisphere is tilted away from the Sun.

Connection
The Seasons

The continual progression of seasons on our planet is related to the conserva-
tion of angular momentum. As shown in Figure 7-18, the Earth's axis of rotation
is tilted by an angle of 23 degrees to the plane of the Earth's orbit around the
Sun. Over time scales of a few years, we can treat the Earth as if no significant
torques act on it, so Earth's angular momentum must be constant. Both the size
and direction of the Earth's angular momentum remain fixed, so that the direc-
tion of the axis remains the same over the course of a year. (The axis does change

direction slightly due to precession, as we mentioned in the
Connection section on inertial guidance systems, page 151, but
this effect is small enough that we can neglect it in the present
discussion.)

In the months of July and August, the Earth is tilted so that
the Northern Hemisphere leans toward the Sun, as shown in Fig-
ure 7-18. (The tilt is oriented most directly toward the Sun at
the summer solstice, around June 21 of each year.) This orien-
tation means that more sunlight falls on each square foot of the
Earth's Northern Hemisphere surface during this period than
during January and February, when the Northern Hemisphere
is tilted away from the Sun. The effect is similar to shining a
flashlight on the floor from directly overhead or from an angle;
the light is brighter when it covers the smaller area of surface

from directly overhead (Figure 7-19). Earth's tilt is why the Northern Hemisphere
experiences summer from June to August and why it experiences winter from
December to February—even though the Earth is closest to the Sun during those
winter months. We have seasons because the conservation of angular momentum
ensures that the Earth's axis of rotation tilts in the same direction over the course
of the year. •
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THINKING MORE ABOUT

Angular Momentum:
The Spinning Solar System' / 7 ;

T h e  solar system, which includes the Earth, the
Moon, the other planets, and lots of smaller

objects that are gravitationally bound to the Sun,
such as asteroids and comets, has a lot of angular
momentum. The planets swing around the Sun in
their stately orbits, while the Sun spins on its axis
once every 26 days. But we know that, in the ab-
sence of an external force, angular momentum is
conserved—it doesn't spontaneously increase or
decrease. So where did all the solar system's an-
gular momentum come from originally?

According to the most widely accepted the-
ory, called the "nebular hypothesis," the Sun and
planets formed almost 5 billion years ago from an
immense, swirling, irregular cloud of dust and gas,
called a "nebula," that extended across trillions
of kilometers of space. Like any swirling cloud,
the nebula had its own angular momentum—it
was slowly spinning about its axis o f  rotation.
Eventually, ever so slowly, the cloud began to spi-
ral inward from the force of gravity due to the
concentration o f  mass a t  i ts  center (Figure
7-20). As the nebula became more dense and
compact, it also began to spin faster. Ultimately,
gravity pulled most of the dust and gas into the
great central mass that we now call the Sun.
Smaller clumps of matter called "planetesimals,"
which were orbiting too fast to fall into the Sun,
formed the planets—Earth, Mars, Jupiter and
so on.

The French mathematician and physicist
Pierre Simon Laplace first proposed the nebular
hypothesis in 1796. His work incorporated the ear-
lier results of the German philosopher Immanuel
Kant, who showed in 1755 that a contracting cloud
of gas would form a disk in a plane perpendicu-
lar to the axis of rotation. Laplace went through
calculations similar t o  those i n  the Looking
Deeper box on the collapse of stars (see page
151), showing how the rotational rate of the Sun
would speed up over time. However, he came up
with a major problem. The calculations predicted
that the Sun's period of rotation should be only a

FIGURE 7-20. Astronomers today believe the solar
system formed from a large cloud of gas and dust (a).
As the cloud contracted under the influence of grav-
ity, it started to spin faster and formed a flattened
disk (b). Eventually, the Sun formed from the central
part of the disk (c), while the outer parts formed into
small rocky planetesimals (d) that over the course of
time collided and grew into today's planets (e).
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few hours, not a month. It seemed that the nebu-
lar hypothesis worked a little too well.

For a long time, the nebular hypothesis was
discredited because of this result. Astronomers
turned to other theories to explain the formation
of the solar system, most of them based on vari-
ous kinds of catastrophes. One idea was that a
massive comet came so close to the Sun that it
pulled out a long stream of material from the Sun,
which eventually produced the planets. This the-
ory was thrown out when astronomers learned
that comets have nowhere near enough mass to
cause such a disruption.

Another idea popular at one time was that the
Sun was once part of a two-star or even three-star
system. According to this idea, the system was un-
stable and eventually one of the stars collided with
the Sun, causing the system to scatter apart and
producing a stream of gas that became the plan-
ets. Beginning in the 1930s, physicists began to find
problems with these catastrophe theories. For in-
stance, calculations showed that a hot stream of
matter from the Sun would dissipate, rather than
condense to  form planets. Other observations
showed that the chemical makeup of the planets
was not consistent with material pulled from
the outer surface o f  the Sun, but must have
formed under cooler conditions. This finding led
astronomers to reconsider the nebular hypothesis,
wondering what had gone wrong with Laplace's
calculations.

Eventually, scientists realized a solution to the
problem: the Sun has a strong magnetic field. As
the early planets orbited the Sun, the Sun exerted

Summary

magnetic forces on them, as well as gravitational
forces. This magnetic force would have acted to
sweep the planets along in faster orbits. However,
by Newton's third law, the planets would have ex-
erted a force back on the Sun, slowing its rotation.
When physicists ran the calculations taking this
into account, they found pretty close agreement
with observations.

This history of a scientific theory is not un-
usual; i t  often happens that theories are aban-
doned because of  a seemingly insurmountable
problem, only to be resuscitated when a way to
solve the problem is found. The important point
to realize is that the success or failure of a scien-
tific theory depends on how well it matches and
explains testable observations.

Today, astronomers accept the nebular hy-
pothesis as the most likely scenario for the origin
of the solar system. The total angular momentum
of the spinning Sun and orbiting planets, as well
as the orientation of the axis of rotation of the en-
tire solar system, is conserved from that swirling
nebular cloud almost 5 billion years ago.

Given this acceptance, do you think that the
original rejection of the nebular hypothesis was
a failure o f  the scientific method? D o  such
changes o f  opinion suggest that scientists are
fickle in  the theories that they support? The
physicist Richard Feynman once said "We are try-
ing to prove ourselves wrong as quickly as possi-
ble, because only i n  that way can we find
progress." What do you think he meant by that?
How does that relate to the theory of solar sys-
tem formation?

Rotational motion is exhibited whenever an object spins
about an axis of rotation, which is the line about which the
object turns. The period of rotation is the time it takes for
a body to complete one entire cycle, and the frequency of
rotation is the number of completed rotations per unit time.
Frequency is customarily measured in hertz, which is de-
fined such that 1 Hz corresponds to one complete rotation
each second.

The angular speed of a rotating object is the angle
through which the object rotates divided by the time it takes
to go through that angle. The angular frequency measures
the number of times a rotation goes through one radian
each second.

When a tangential force is applied away from the axis
of rotation, that force produces a torque. The magnitude of
the torque is given by T = rF, where F is the tangential force
and r is the distance from the axis to the point of applica-
tion of the force.

The moment of inertia of an object measures the dis-
tribution of its mass. The more mass there is and the far-
ther away it lies from the axis of rotation, the greater the
moment of inertia. The angular momentum of a rotating
body is defined as the product of its angular speed and its
moment of inertia. The rate of change of angular momen-
tum in any system is equal to the net external torque, a
result that follows from the rotational form of Newton's
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second law. In the absence of a net external torque, the an-
gular momentum of a rotating body cannot change—a re-
sult called the law of conservation of angular momentum.

The center of mass or center of gravity of an object is
the average position of  its mass and can be thought of  as

Key Terms

the point at which the object can be balanced without ro-
tation. Mot ion that  involves both rotation and ordinary
movement through space can be broken down into two sim-
ple processes: motion of the center of mass dictated by New-
ton's laws of motion and rotation around the center of mass.

angular momentum The moment of inertia of a body, times
its angular velocity. (p. 147)

angular speed The angle through which an object has moved
about the axis of rotation, divided by the time it takes it to
go through that angle. (p. 141)

axis of rotation The line through the center of an object,
around which everything else rotates. (p. 139)

center of mass (center of gravity) The point of support on
which an object can be balanced. (p. 152)

conservation of angular momentum I f  the net external
torque is zero, the angular momentum of any system must
stay constant over time. (p. 149)

frequency of rotation The number of times an object
completes a rotation in a given amount of time. (p. 140)

Key Equations

Frequency of rotation =  Period of rotation

hertz The unit of measure of frequency, corresponding to one
complete rotation every second. (p. 140)

moment of inertia The quantity that describes the
distribution of mass around an axis of rotation. (p. 146)

period of rotation The time it takes for an object to make
one complete rotation. (p. 140)

rotational motion The spinning motion that occurs when an
object rotates about an axis located within it, usually an axis
through its center of mass. (p. 139)

torque The force applied perpendicular to a line from the
axis of rotation, multiplied by the distance from the axis of
rotation. (p. 143)

1

Angular speed =
Angle traversed

Time it takes to traverse the angle

Torque =  Force applied x  Distance from the axis of rotation
Change in angular momentum

Net external torque = Change in time

Angular momentum = Moment of inertia x Angular velocity

Review
1. What is rotational motion? Give an example.
2. What is an axis of rotation? Give an example.
3. What is the period of a rotating body? In what units is the

period described?
4. Define the frequency of rotation.
5. What is the period of the Earth's rotation? Its frequency?
6. What is the frequency in hertz of a disk that makes one

complete revolution every second? Every 2 seconds?
7. Describe the relationship between frequency and period.

What is the mathematical equation?
8. What is the angular speed of a rotating body?

9. How does angular speed differ from linear speed for a
point on a rotating body? (Think in terms of actual dis-
placement in meters vs. degrees.)

10. What is a radian?

11. For one complete rotation of a rotating body, what is the
angular displacement in degrees? In radians?

12. Define the angular frequency of an object. What are its
units?

13. What is a torque?

14. How can you increase the torque on an object without in-
creasing the force applied?
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15. Compare the role of torque in rotational motion to the role
of force in linear motion. When you apply a torque to a ro-
tating object, how does this affect the rate of rotation?

16. What is angular momentum?

17. How does the mass o f  an object affect i ts  angular
momentum?

18. What is a moment of inertia? How does the distribution of
mass affect this?

19. What is the conservation of angular momentum? Give an
example.

20. Compare and contrast angular momentum t o  l inear
momentum.

Questions
1.

21. I f  angular momentum is conserved, does the moment of
inertia have to stay the same? How about the angular
speed? The product of these two quantities?

22. What is meant by the direction of angular momentum? Is
the direction of angular momentum the same as the direc-
tion of an object's rotation about an axis? Compare this to
the direction of linear momentum.

23. What is the center of mass of an object?
24. Is the center of mass always located at the geometric cen-

ter of an object? Explain.
25. What is the law of compound motion for rotating objects?
26. How is the conservation of angular momentum responsi-

ble for the difference between summer and winter?

What is the frequency of the minute hand of a clock in
hertz?

2. When you push on an object such as a wrench, a steel pry
bar, or even the outer edge of a door, you are producing a
torque equal to the force applied times the lever arm. At
what angle to the lever arm should a force be applied to
produce maximum torque and why?

3. A  children's seesaw is essentially a plank balanced on a
fulcrum. Explain its operation in terms of torque and an-
gular momentum. What happens when one person is much
heavier? Does it matter where on the seesaw each person
sits? Explain.

4. From what you learned in this chapter, why was the in-
vention of rifling in a long gun or cannon barrel so impor-
tant? (Rifling is  a  series o f  screw-like grooves etched
into the interior of a rifle barrel that imparts a spin to the
bullet.)

5. Why does a helicopter have a tail rotor? Some of the largest
helicopters have two rotors on top; do these two rotors spin
in the same direction?

6. How does conservation of angular momentum affect the
stability of a bike?

7. What are some of the reasons that people initially have a
difficult time staying upright when they are learning to ride
a bike? How does turning the bicycle wheel act to stabi-
lize a cyclist when a bike is stationary?

8. How might a pole-vaulter pass over a 14-foot bar i f  she
were only able to get her center of mass to reach 13.5 feet?

9. How would you describe the path of a flock of birds or a
school of fish using the center of mass of the combined
masses of the individuals in these populations? Why might
you do this?

10. The Earth, the Sun, and most other objects in space are
not uniform spheres. Instead, they tend to be much denser
toward the center (the core) than on the outside (the crust).

For a body of a given mass and size, which will have the
greater moment of inertia—a uniform sphere or a nonuni-
form sphere with a dense core? Why? (Hint: Think about
the distribution of mass relative to its distance from the
axis of rotation.)

11. I f  you were in a spaceship with an inertial guidance system
(see page 151) and i f  an outside observer saw that the
spaceship was rotating clockwise, what motion would you
see in the gyroscope inside the ship?

12. Which planet has a longer period of rotation around the
Sun, Mercury or the Earth? (Hint  Mercury is the closest
planet to the Sun.) Which planet has a higher frequency?

13. While you're riding a bicycle (see figure), which has a
higher rotation frequency, the front sprocket or the rear
sprocket?

Chain

Rear
sprocket

Pedal

Front
sprocket

14. Five forces act on the outside of a wheel, as shown in the
figure. Which of the five forces exert a torque about the
center of the wheel?

L I
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15. Consider two forces acting on the front tire of a bicycle
wheel as the rider is braking: the road pushing up on the
tire, and friction pushing back on the tire. Which of these
forces exerts a torque about the center o f  the wheel?
Explain.

16. Consider the simple dumbbell shown in the figure. It con-
sists of two 10-kilogram spheres separated by a 2-meter
light rod. Consider rotating i t  about two axes: one axis
through the middle of the rod and one axis passing through
one of the spheres. In which case will the dumbbell have a
higher moment of inertia?

1* 2 m

17. Consider the asymmetrical dumbbell shown in the figure.
It consists of two spheres separated by a 2-meter light rod.
Rotation about which axis (A, B, or C) involves the low-
est moment of inertia?

1 - 4 - -  2 m — 0 1

18. Consider the irregularly shaped object shown in the figure.
Through which axis (A, B, or C) will the moment of iner-
tia be greatest? Through which axis wil l  it be least? Ex-
plain your reasoning.

Problem-Solving Examples

19. I f  everyone in the world moved to the equator, what would
happen to the moment of inertia of the Earth? What would
happen to  the angular momentum o f  the Earth? What
would happen to the angular speed of the Earth?

20. You have a ball tied to a
string, and you spin i t
around in  a  horizontal
circle. Your arm, sticking
straight up in the air, defines the
axis of rotation. Consider the force
that the string exerts on the ball.
Does that force exert a  torque
about the axis of rotation? Why or
why not? Suppose you let some
string slip through your fingers, al-
lowing the ball to spin at  a greater distance from the
axis. What happens to the angular speed of the rotation?
Explain.

21. I n  the following figure, which location is most likely to be
the center of mass of the dumbbell?

A B  C

2m

22. A  10-kilogram metal sphere is
welded to a 10-kilogram metal
disk as shown in the figure.
Which location i s  mos t
likely to be the center of
mass of the object?

10 kg

23. Which location is most likely
to be the center of mass of
the L-shaped object shown in
the figure?

T h e  S u n ' s  C o l l a p s e
In the Looking Deeper section, we discuss how stars spin
faster as they collapse inward with time. We gave the start-
ing and ending diameters of the Sun as 7 X 108 meters col-
lapsing down to  6.4 x  106 meters. How fast wil l  i t  be
rotating when it becomes a white dwarf?

REASONING A N D  SOLUTION: The steps t o  fo l l ow  f o r
solving this problem are described in the Looking Deeper

A•

• D

C•

10 kg

• B

• E

section. From Figure 7-11, the moment of inertia of a uni-
form sphere is (5 M X R2). The Sun's angular frequency is
2irf or 2wIT where T is the period of rotation. Therefore,
the angular momentum of the Sun today is:

Angular momentum — Moment of inertia x  2a
Period

G M X Ri2)2r
Initial angular momentum —

26 days
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where Ri is the initial radius of the Sun before the col-
lapse. The angular momentum o f  the Sun after the
collapse will be:

Final angular momentum -
1s M  x Rf2)271-

where T is the (unknown) time it takes to do one rotation
after collapse and Rf is the radius after collapse. However,
because the angular momentum of the Sun is constant, by
the law of conservation of angular momentum, we can set
these two expressions equal:

Initial angular momentum = Final angular momentum
/2G M X R•2)271- = is  M X Rf2)2ir

26 days

Problems

Canceling the 1, the mass of the sun, and 271-, we find

R12 R f 2
26 days T

R f 2 ) s o

= 26 days x  (6.4 x  106 m)2
(7 x  108 m)2

(  4.1 X 1013 m2  )days= 26 x
4.9 x  1017 m2

= 2.2 X 10-3 days

= 3.1 minutes •

1. A .  What is the rotational speed in revolutions per second
(hertz) of a CD in the following situations?
a. The disc makes four revolutions in 48 seconds (this

speed is much slower than that of a normal CD).
b. The disc rotates six times in 240 seconds.
c. The disc makes 1000 revolutions in 2 minutes.

B. What are the velocities in radians per second for parts a,
b, and c?

C. What are the velocities in degrees per second for parts
a, b, and c?

D. How large a displacement in degrees occurs in each of
parts a, b, and c if these discs spin for 30 seconds at the
same speed? In radians?

2. In  the mechanical and plumbing trades, many tools come in
a variety of lengths. One of the reasons they are available
in varying lengths is that different torques can be generated
depending on the lengths of these tools.
a. I f  you hold a 0.2-m wrench at its end and exert a force

of 30 N, how much torque will you generate?
b. I f  you use a 0.5-m wrench and exert a force of 45 N, how

much torque can you generate?
c. I f  a plumber needs to generate a torque of 160 N-m to

unscrew a rusted pipe and can only generate a maximum
force that day of 20 N because she has been out too late
the night before, what length wrench is the smallest that
she can use?

d. What effect does the length of the handle of a wrench
have on the torque that can be generated by it?

e. To  achieve the maximum torque from a given applied
force to a lever arm such as a wrench, at what angle
should the force be applied to the lever or wrench?

3. A  meter stick is balanced perfectly on a fulcrum at the
0.5-m mark.

a. I f  a 5-N weight is added to the very tip of the zero side
of the meter stick, where do you need to place a 10-N
weight to rebalance the stick?

b. I f  you use an 8-N weight instead of a 10-N weight to bal-
ance the stick, where would you place it?

c. I f  the second weight is 3 N instead of 10 N, where should
you place it to balance the meter stick? Can the meter
stick be balanced at all?

d. I f  1-kg and 2-kg masses are used in part a, where should
these masses be placed for the stick to balance?

e. What are the torques applied by each of the weights in
parts a, b, and c?

f. Repeat parts a-d with the fulcrum placed at 0.7 m.
g. I f  the torques do not balance, what happens? Is angular

momentum conserved?
4. What is the moment of  inertia o f  each o f  the following

objects?
a. A  hollow sphere with mass 5 kg and radius 0.5 m
b. A  solid ball that weighs 3 lb and has a radius of 1 foot
c. A  200-kg satellite in a circular orbit around a small planet

at a distance 5000 km from the planet's center (Consider
the satellite to be a point mass; the moment of inertia of
a single particle is MR2.)

d. A  large truck tire of 0.75-m radius and mass 20 kg (as-
sume all the mass is concentrated on the outer edge)

5. What is the angular momentum of the rotating objects in
Problem 4 under the following circumstances?
a. When the spheres in parts a and b rotate at 2 revolutions

per second?
b. When the spheres in parts a and b rotate at 1 radian per

second?
c. When the satellite in part c makes 1 revolution every

90 minutes?
d. When the tire in part d spins at a rate of 1 revolution

per second?
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6: In  what direction does the angular momentum vector point
for the following situations (remember the right-hand rule)?
a. A  Ferris wheel spinning clockwise as you look at it
b. A  CD that spins counterclockwise as you look at it
c. A  bicycle wheel as the bike moves straight in a forward

direction
d. The left rear tire of a car moving straight backward in

reverse
e. The right rear tire of a car moving straight backward in

reverse
7. I f  the direction of the angular momentum vector is pointed

straight at you, in what direction does an object rotate?
8. Several children are playing on a merry-go-round in a park.

Initially four of them, each weighing 20 kg, sit on the edge,
3 m from the center.

Investigations

a. I f  you neglect the weight of the merry-go-round, what is
the initial angular momentum i f  it spins at a rate of 6
revolutions per minute?

b. No t  comfortable sitting on the edge of a spinning disk,
the four children decide to walk to the center and sit
halfway between the center and the edge, at 1.5 m. Will
the angular velocity of the merry-go-round change? I f
so, what is the new angular velocity?

c. Was angular momentum conserved when the children
moved?

9. Astronomers know of collapsed stars called "pulsars" that
rotate hundreds of times per second. The Sun (radius 7 X
108 m) now rotates once every 26 days. What would its ra-
dius have to be for it to rotate 100 times each second? Com-
pare that radius to the size of the town you live in.

1. Make a list of objects in your everyday life that rotate as
part of their function. Think about the distribution of mass
in these items and make notes on this. Based on your esti-
mate of  their mass distribution, rank the objects by how
much torque is needed to cause them to experience an an-
gular acceleration. Consider the distance the force is applied
from the axis of rotation.

2. Research the development of gyroscopes. What are the prin-
ciples behind them? What uses do they have?

3. Go to a pool hall or to a friend's house who has a pool table.
Try putting different spins on the balls. Observe what hap-
pens to a spinning ball as it collides with another ball. Ana-
lyze this in terms of angular momentum. Is i t  conserved?
Why or why not?

4. I f  you have the opportunity to  work with a  mechanic,
plumber, or carpenter, ask to be shown how to use different
hand tools and experiment with the effect of using tools of
varying lengths. For example, try a  long versus a  short
wrench, screwdriver, or hammer. Does your experience con-
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cerning how much force is needed to do your chosen task
comform with what you have learned in this chapter?

5. Using the library, the Internet, or both, research how the
helicopter was developed. What were some of the problems
that had to be solved to ensure stable flight, and how were
they solved?

6. Investigate how a pitcher can throw a curve ball. How does
the spin of  the ball differ for the different kinds of curve
balls?

7. Use the web to investigate the discovery of dark matter by
Vera Rubin of the Carnegie Institution of Washington. How
did her observations of the rotation of galaxies reveal that
much of the mass of the universe is invisible?

8. Occasionally two galaxies collide so that hundreds of bil-
lions of stars coalesce into one giant galaxy. Use the web to
investigate this process. What happens to the angular mo-
mentum of the new combined galaxy compared to the orig-
inal two galaxies?

See the Physics Matters home page at www.wiley.com/college/trefil for valuable web links.

1. www.physics.brocku.ca/faculty/sternin/120/applets/CircularMotion/ An applet showing position, velocity and accelera-
tion for uniform circular motion from the Department of Physics at Brock University.

2. www.physics.uoguelph.ca/tutorials/torque/Q.torque.html The Rotational Motion Tutorial at the Department of Physics,
University of Guelph.

3. web.hep.uiuc.edu/home/g-gollin/dance/dance_physics.html Dedicated to the physics of dance for aficionados of both.
4. www.windows.ucar.edu/tour/link =/cool_stuff/tour_evolution_ss_1.html Discusses solar system evolution, including cur-

rent theories of system formation.


