1. A stone is thrown horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.

Yinitial	Xinitial	V x-initial	a _x
			0 m/s²
Y _{final}	X _{final}	V _{y-initial}	a _y
			-9.8 m/s²

How long does it take the stone to reach the bottom of the cliff?		
Equation to Use	Math / Solution	
Answer with Units		

How far from the base of the cliff does the stone hit the ground?		
Equation to Use Math / Solution		
Answer with Units		

Find the horizontal and vertical components of the stone's velocity just before it hits the ground. What is the final velocity?

Equation to Use	Math / Solution
Answer with Units	

2. A player kicks a football from ground level with an initial velocity of 27.0 m/s, 30.0° above the horizontal, as shown in Figure 6-4. Find each of the following. Assume that air resistance is

Xinitial	Initial Speed	V x-initial
X _{final}	Initial Angle	V _{y-initial}

What is the ball's hang time?		
Equation to Use	Math / Solution	
Answer with Units		

What is the ball's maximum height?		
Equation to Use	Math / Solution	
Answer with Units		

What is the ball's range?		
Equation to Use	Math / Solution	
Answer with Units		

negligible.

3. A soccer ball is kicked from the top of a 180 m cliff with an initial velocity of 57 m/s at 39°.

Yinitial	Xinitial	Initial Speed	V x-initial	a _x
				0 m/s ²
Y _{final}	X_{final}	Initial Angle	V _{y-initial}	a _y
				-9.8 m/s ²

Find the maximum height	
Equation to Use	Math / Solution
Answer with Units	

Find the time to the top, and to the ground	
Equation to Use	Math / Solution
Answer with Units	

(#3 continued)

Find the final Y velocity, and the resutltant velocity		
Equation to Use	Math / Solution	
Answer with Units		

Find the range.	
Equation to Use	Math / Solution
Answer with Units	

Name			
Name			

4. Florence Griffith-Joyner of the United States set the women's world record for the 200 m run by running with an average speed of 9.37 m/s. Suppose Griffith-Joyner wants to jump over a river. She runs horizontally from the river's higher bank at 9.37 m/s and lands on the edge of the opposite bank. The difference in height between the two banks is 2.00 m.

Diagram-It

Y _{initial}	Initial Speed	V _{x-initial}	a _x
			0 m/s²
Y _{final}	Initial Angle	V y-initial	a _y
			-9.8 m/s²

How long does it take her to reach the bottom of the cliff?			
Equation to Use	Math / Solution		
Answer with Units			
How wide is the river?			
Equation to Use	Math / Solution		
Answer with Units			

5. A marble rolls off the edge of a table that is 0.734 m high. The marble is moving at a speed of 0.122 m/s at the moment that it leaves the edge of the table. How far from the table does the marble land?

6. A downed pilot fires a flare from a flare gun. The flare has an initial speed of 250 m/s and is fired at an angle of 35° to the ground. How long does it take for the flare to reach its maximum altitude?

7. You accidentally throw your car keys horizontally at 8.0 m/s from a cliff 64-m high. How far from the base of the cliff should you look for the keys?

- 8. An arrow is shot at 30.0° above the horizontal. Its velocity is 49 m/s, and it hits the target.
 - a. What is the maximum height the arrow will attain?
 - b. The target is at the height from which the arrow was shot. How far away is it?

- 9. A busy waitress slides a plate of apple pie along a counter to a hungry customer sitting near the end of the counter. The customer is not paying attention, and the plate slides off the counter horizontally at 0.84 m/s. The counter is 1.38 m high.
 - a. How long does it take the plate to fall to the floor?
 - b. How far from the base of the counter does the plate hit the floor?
 - c. What are the horizontal and vertical components of the plate's velocity just before it hits the floor?

- 10. A ball is thrown from a 20 m high roof with a speed of 10.0 m/s and an angle of 37.0° with respect to the horizontal.
 - a. How far is the ball from the building 2.5 s after it is thrown?
 - b. How far is the ball from the ground 2.5 s after it is thrown?

- 11. A tennis ball is thrown toward a vertical wall with a speed of 21.0 m/s at an angle of 40.0° above the horizontal. The horizontal distance between the wall and the point where the tennis ball is released is 23.0 m.
 - a. At what height above the point of release does the tennis ball hit the wall?
 - b. Has the tennis ball already passed the highest point on its trajectory when it hits the wall? Justify your answer.