

	V	I	R	Р
R1			90	
R2			24	
R3			3	
R4			4	
R5			5	
R6			12	
R7			30	
Т	180			

	V	l	R	Ρ
R1			8	
R2			16	
R3			24	
R4			30	
R5			20	
R6			6	
Т	150			

For this problem, also solve for the total energy dissipated per minute of operation

	V	I	R	Р	E (60s)
R1			25		
R2			15		
R3			45		
R4			5		
R5			7		
R6			10		
R7			20		
R8			30		
R9			30		
R10			8		
R11			15		
Т	180				

	V	I	R	Р
R1			10	
R2			10	
R3			5	
R4			10	
R5			15	
R6			8	
R7			7	
R8			20	
R9			40	
R10			10	
R11			15	
R12			12	
R13			60	
R14			5	
Т	240			

	V	I	R	Р
R1		5		
R2	75			
R3			50	
R4		1		
R5	50			
R6		1		
R7			50	
R8		5		
Т	150			

	V	I	R
R1	3.5		
R2			5
R3		1.5	
R4	4.0		
R5		1.0	
R6			2
Т		2.0	

	V	I	R	Р
R1		8		
R2		2		
R3	10			
R4			10	
R5			9	
R6			0.375	
Т	43.75			

And, from your text; Chapter 18; 1, 5, 7, 12, 13, 21, 26, 29, 31, 33

- 1. (I) A current of 1.30 A flows in a wire. How many electrons are flowing past any point in the wire per second?
- 5. (I) What voltage will produce 0.25 A of current through a 3800 Ω resistor?
- 7. (II) An electric clothes dryer has a heating element with a resistance of 9.6 Ω .
 - (a) What is the current in the element when it is connected to 240 V?
 - (b) How much charge passes through the element in 50 min?
- 12. (I) What is the diameter of a 1.00-m length of tungsten wire whose resistance is 0.32Ω ?
- ◆ 13. (I) What is the resistance of a 3.5-m length of copper wire1.5 mm in diameter?
- 21. (II) A rectangular solid made of carbon has sides of lengths 1.0 cm, 2.0 cm, and 4.0 cm, lying along the x, y, and z axes, respectively (Fig. 18-35). Assume the resistivity is $\rho = 3.0 \times 10^{-5} \Omega \bullet m$. Determine the resistance for current that passes through the solid in;
 - (a) the x direction,
 - (b) the y direction, and
 - (c) the z direction.

- 26. (I) The heating element of an electric oven is designed to produce 3.3 kW of heat when connected to a 240V source. What must be the resistance of the element?
- 29. (I) (a) Determine the resistance of, and current through, a 75-W lightbulb connected to its proper source voltage of 120 V
 - (b) Repeat for a 440-W bulb.
- ✤ 31. (II) A 120-V hair dryer has two settings: 850 W and 1250 W
 - (a) At which setting do you expect the resistance to be higher?
 - After making a guess, determine the resistance at (b) the lower setting;
 - and (c) the higher setting.
- 33. (II) How many kWh of energy does a 550-W toaster use in the morning if it is in operation for a total of 15 min?
 - At a cost of 9.0 cents/kWh, estimate how much this would add to your monthly electric energy bill if you made toast four mornings per week.

Chapter 19; 5, 7, 11, 19, 25, 29

- 5. (I) Four 240 Ω lightbulbs are connected in series. What is the total resistance of the circuit? What is their resistance if they are connected in parallel?
- 7. (I) A 650-Ω and a 2200-Ω resistor are connected in series with a 12-V battery. What is the voltage across the 2200-Ω resistor?
- 11. (II) Three 240-Ω resistors can be connected together in four different ways, making combinations of series and/or parallel circuits. What are these four ways, and what is the net resistance in each case?
- 19. (III) Consider the network of resistors shown in Fig. 19-40. Answer qualitatively:
 - (a) What happens to the voltage across each resistor when the switch S is closed
 - (b) What happens to the current through each when the switch is closed?
 - (c) What happens to the power output of the battery when the switch is closed?

• (d) Let $R_1 = R_2 = R_3 = R_4 = 125 \Omega$ and V = 22.0 V. Determine the current through each resistor before and after closing the switch. Are your qualitative predictions confirmed?

- 25. (II) (a) What is the potential difference between points a and d in Fig. 19-45 (same circuit as Fig. 19-13, Example 19-8)
 - (b) what is the terminal voltage of each battery? (from b-d, or g-e)

• 29. (II) Determine the magnitudes and directions of the currents in each resistor shown in Fig. 19-48. The batteries have emfs; $E_1 = 9.0$ V and $E_2 = 12.0$ V and the resistors have values; $R_1 = 25\Omega$, $R_2 = 18\Omega$, and $R_3 = 35\Omega$.

And, from your text; Chapter 18; 1, 5, 7, 12, 13, 21, 26, 29, 31, 33

- 1. (I) A current of 1.30 A flows in a wire. How many electrons are flowing past any point in the wire per second?
 8.13e18 electrons/s
- 5. (I) What voltage will produce 0.25 A of current through a 3800 Ω resistor? 950 V
- 7. (II) An electric clothes dryer has a heating element with a resistance of 9.6 Ω .
 - (a) What is the current in the element when it is connected to 240 V? 25 A
 - (b) How much charge passes through the element in 50 min? 7.5e4C
- 12. (I) What is the diameter of a 1.00-m length of tungsten wire whose resistance is
 0.32 Ω? 4.7e-4 m
- 13. (I) What is the resistance of a 3.5-m length of copper wire1.5 mm in diameter?
 3.3e-2 Ω
- 21. (II) A rectangular solid made of carbon has sides of lengths 1.0 cm, 2.0 cm, and 4.0 cm, lying along the x, y, and z axes, respectively (Fig. 18-35). Assume the resistivity is $\rho = 3.0 \times 10^{-5} \Omega \bullet m$. Determine the resistance for current that passes through the solid in;
 - (a) the x direction, **3.8e-4** Ω
 - (b) the y direction, 1.5e-3 Ω
 - (c) the z direction 6.0e-3 Ω

- 26. (I) The heating element of an electric oven is designed to produce 3.3 kW of heat when connected to a 240V source. What must be the resistance of the element? 17 Ω
- 29. (I) (a) Determine the resistance of, and current through, a 75-W lightbulb connected to its proper source voltage of 120 V 190Ω 0.63A
 - (b) Repeat for a 440-W bulb. 33 Ω 3.7A
- ✤ 31. (II) A 120-V hair dryer has two settings: 850 W and 1250 W
 - (a) At which setting do you expect the resistance to be higher?
 - After making a guess, determine the resistance at (b) the lower setting;
 - and (c) the higher setting. **850 W 17 Ω 1250 W 12 Ω**
- 33. (II) How many kWh of energy does a 550-W toaster use in the morning if it is in operation for a total of 15 min? 0.14 kWh
 - At a cost of 9.0 cents/kWh, estimate how much this would add to your monthly electric energy bill if you made toast four mornings per week.

Chapter 19; 5, 7, 11, 19, 25, 29

- 5. (I) Four 240 Ω lightbulbs are connected in series. What is the total resistance of the circuit? What is their resistance if they are connected in parallel? 960 Ω
- 7. (I) A 650-Ω and a 2200-Ω resistor are connected in series with a 12-V battery. What is the voltage across the 2200-Ω resistor?
- 11. (II) Three 240-Ω resistors can be connected together in four different ways, making combinations of series and/or parallel circuits. What are these four ways, and what is the net resistance in each case?
- 19. (III) Consider the network of resistors shown in Fig. 19-40. Answer qualitatively:
 - (a) What happens to the voltage across each resistor when the switch S is closed
 - (b) What happens to the current through each when the switch is closed?
 - (c) What happens to the power output of the battery when the switch is closed?

• (d) Let $R_1 = R_2 = R_3 = R_4 = 125 \Omega$ and V = 22.0 V. Determine the current through each resistor before and after closing the switch. Are your qualitative predictions confirmed?

- 25. (II) (a) What is the potential difference between points a and d in Fig. 19-45 (same circuit as Fig. 19-13, Example 19-8)
 - (b) what is the terminal voltage of each battery? (from b-d, or g-e)

• 29. (II) Determine the magnitudes and directions of the currents in each resistor shown in Fig. 19-48. The batteries have emfs; $E_1 = 9.0$ V and $E_2 = 12.0$ V and the resistors have values; $R_1 = 25\Omega$, $R_2 = 18\Omega$, and $R_3 = 35\Omega$.

